Massive open online courses (MOOCs) have gained enormous popularity in recent years and have attracted learners worldwide. However, MOOCs face a crucial challenge in the high dropout rate, which varies between 91%-93%. An interplay between different learning analytics strategies and MOOCs have emerged as a research area to reduce dropout rate. Most existing studies use click-stream features as engagement patterns to predict at-risk students. However, this study uses a combination of click-stream features and the influence of the learner’s friends based on their demographics to identify potential dropouts. Existing predictive models are based on supervised learning techniques that require the bulk of hand-labelled data to train models. In practice, however, scarcity of massive labelled data makes training difficult. Therefore, this study uses self-training, a semi-supervised learning model, to develop predictive models. Experimental results on a public data set demonstrate that semi-supervised models attain comparable results to state-ofthe-art approaches, while also having the flexibility of utilizing a small quantity of labelled data. This study deploys seven well-known optimizers to train the self-training classifiers, out of which, Stochastic Gradient Descent (SGD) outperformed others with the value of F1 score at 94.29%, affirming the relevance of this exposition.
Manual test case generation is an exhaustive and time-consuming process. However, automated test data generation may reduce the efforts and assist in creating an adequate test suite embracing predefined goals. The quality of a test suite depends on its fault-finding behavior. Mutants have been widely accepted for simulating the artificial faults that behave similarly to realistic ones for test data generation. In prior studies, the use of search-based techniques has been extensively reported to enhance the quality of test suites. Symmetry, however, can have a detrimental impact on the dynamics of a search-based algorithm, whose performance strongly depends on breaking the “symmetry” of search space by the evolving population. This study implements an elitist Genetic Algorithm (GA) with an improved fitness function to expose maximum faults while also minimizing the cost of testing by generating less complex and asymmetric test cases. It uses the selective mutation strategy to create low-cost artificial faults that result in a lesser number of redundant and equivalent mutants. For evolution, reproduction operator selection is repeatedly guided by the traces of test execution and mutant detection that decides whether to diversify or intensify the previous population of test cases. An iterative elimination of redundant test cases further minimizes the size of the test suite. This study uses 14 Java programs of significant sizes to validate the efficacy of the proposed approach in comparison to Initial Random tests and a widely used evolutionary framework in academia, namely Evosuite. Empirically, our approach is found to be more stable with significant improvement in the test case efficiency of the optimized test suite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.