Background: Legumes are relatively cheap, non-animal good source of valuable proteins, micro-nutrients and vitamins in human and animal nutrition for many years. Recognizing the potential of legumes in achieving the sustainable solution to the global food security, protein access, eradicate hunger and malnutrition, FAO of the United Nations (The Food and Agriculture Organization), facilitated 2016 as the International Year of Pulses (grain legumes) under the banner ‘nutritious seeds for a sustainable future’. The nutrient, nitrogen and biological nitrogen fixation is very crucial for legume’s growth, besides sulphur deficiency is very sensitive to the nodulation and nitrogen fixation. Despite the amazing beneficial properties, legumes are neglected by most of us due to having tough competition with low price and high yielding cereal varieties.
Methods: Therefore keeping in mind the above points, this review discusses the importance and application of legumes in different perspectives, legume cultivation patterns, importance of sulphur nutrition to legumes, role of sulphur oxidizing bacteria in sulphur nutrition, improving soil and environment, challenges and future of legumes.
Conclusion: Legumes have variety of applications including food, health, environment and many other sectors but we are not able to produce enough amount according to their genetic potential due to inefficient breeding programs. Sulphur is an important nutrient along with N effecting its growth and yield. Sulphur oxidizing bacteria (SOB) have been proved as an important tool for improving yield and symbiotic nitrogen fixation in legumes. Therefor application of biofertilizers along with SOB and improved genetic breeding programmes may prove leading steps to enhance their production.
Aims:The present investigation was carried out to isolate, screen and characterize potential sulfur-oxidizing bacteria (SOB) isolated from mustard field's soil.
Methods and Results:A total of 130 bacteria were isolated and after screening five maximum sulfate-producing isolates were optimized for culture conditions.The incubation time of 48 h was found optimum for all bacterial isolates and 30°C was the best temperature for the growth of SSD11, SSR1 and SSG8 whereas 35°C for SSF17. The pH 8 was found best for all four isolates except SSF17 (6 pH). Media having glucose as a carbon source and ammonium sulphate as an N-source were producing maximum sulphate. The isolates SSF17, SSR1 and SSG8 were identified as Burkholderia cepacia (accession no. MT559819), Enterobacter cloacae (accession no. MT559820) and Klebsiella oxytoca (accession no. MT372097), respectively, on the basis of morphological, biochemical and molecular characterization. The isolates were also found to increase N and S uptake efficiently in both wheat and mustard crops.
Conclusion:This study strongly concludes that SOB isolated from the mustard field can oxidize sulfur in vitro and in vivo conditions. The three best isolates come out of the study were identified as Burkholderia, Enterobacter and Klebsiella strains. Also, inoculation of SOB increased the uptake of S and N nutrient in mustard and wheat crops and thus may be proved as an important plant growth-promoting bacteria having the biofertilization capability.Significance and Impact of the study: As we know, our soil is continuously deteriorating day by day due to excessive utilization and immoderate use of chemical fertilizers. The SOB could minimize the application of chemical fertilizers thus reducing environmental deterioration by improving soil health in sustainable agricultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.