Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine-aspartate phosphorelay signal-transduction system (also known as the two-component system) is important in cellular adaptation to environmental changes in both prokaryotes and lower eukaryotes. In this system, protein histidine kinases function as sensors and signal transducers. The Escherichia coli osmosensor, EnvZ, is a transmembrane protein with histidine kinase activity in its cytoplasmic region. The cytoplasmic region contains two functional domains: domain A (residues 223-289) contains the conserved histidine residue (H243), a site of autophosphorylation as well as transphosphorylation to the conserved D55 residue of response regulator OmpR, whereas domain B (residues 290-450) encloses several highly conserved regions (G1, G2, F and N boxes) and is able to phosphorylate H243. Here we present the solution structure of domain B, the catalytic core of EnvZ. This core has a novel protein kinase structure, distinct from the serine/threonine/tyrosine kinase fold, with unanticipated similarities to both heatshock protein 90 and DNA gyrase B.
Histidine kinases play a major role in signal transduction in prokaryotes for the cellular adaptation to environmental conditions and stresses. Recent progress in the three‐dimensional structure determination of two representative members of histidine kinases, EnvZ (class I) and CheA (class II), has revealed common structural features, as well as a kinase catalytic motif topologically similar to those of the ATP‐binding domains of a few ATPases. They have also disclosed that there are significant differences in domain organization between class I and II histidine kinases, possibly reflecting their distinct locations, functions and regulatory mechanisms. In spite of this diversity, both class I and II histidine kinases use similar four‐helix bundle motifs to relay phosphoryl groups from ATP to regulatory domains of response regulators. The previously known so‐called transmitter domain of histidine kinase is further dissected into two domains: a CA (Catalytic ATP‐binding) domain and a DHp (Dimerization Histidine phosphotransfer) domain for class I, or a CA domain and an HPt (Histidine‐containing Phosphotransfer) domain for class II histidine kinases. From a comparative analysis of the CA domains of EnvZ, CheA and their ATPase homologues, the core elements of the CA domain have been derived. The apparent resemblance between DHp and HPt domains is only superficial, and significant differences between them are discussed.
Hepatocellular carcinoma (HCC), also called malignant hepatoma, is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. Incidence and mortality of HCC are increasing in Western countries and are expected to rise as a consequence of the obesity epidemic. Multiple factors trigger the initiation and progression of HCC including chronic alcohol consumption, viral hepatitis B and C infection, metabolic disorders and age. Although Sorafenib is the only FDA approved drug for the treatment of HCC, numerous treatment modalities such as transcatheter arterial chemoembolization/transarterial chemoembolization (TACE), radiotherapy, locoregional therapy and chemotherapy have been tested in the clinics. Polymeric nanoparticles, liposomes, and micelles carrying small molecules, proteins, peptides and nucleic acids have attracted great attention for the treatment of various cancers including HCC. Herein, we discuss the pathogenesis of HCC in relation to its various recent treatment methodologies using nanodelivery of monoclonal antibodies (mAbs), small molecules, miRNAs and peptides. Synopsis of recent clinical trials of mAbs and peptide drugs has been presented with a broad overview of the pathogenesis of the disease and treatment efficacy.
Ashwagandha (Withania Somnifera, WS), belonging to the family Solanaceae, is an Ayurvedic herb known worldwide for its numerous beneficial health activities since ancient times. This medicinal plant provides benefits against many human illnesses such as epilepsy, depression, arthritis, diabetes, and palliative effects such as analgesic, rejuvenating, regenerating, and growth-promoting effects. Several clinical trials of the different parts of the herb have demonstrated safety in patients suffering from these diseases. In the last two decades, an active component of Withaferin A (WFA) has shown tremendous cytotoxic activity suggesting its potential as an anti-carcinogenic agent in treatment of several cancers. In spite of enormous progress, a thorough elaboration of the proposed mechanism and mode of action is absent. Herein, we provide a comprehensive review of the properties of WS extracts (WSE) containing complex mixtures of diverse components including WFA, which have shown inhibitory properties against many cancers, (breast, colon, prostate, colon, ovarian, lung, brain), along with their mechanism of actions and pathways involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.