Purpose To explore the effects of the first all-female transantarctic expedition on hormonal axes pertinent to reproductive and metabolic function. Methods Six females (age, 28–36 yr; body mass index, 24.2 ± 0.97 kg·m−2) hauled 80-kg sledges 1700 km in 61 d. Estimated average energy intake was 20.8 ± 0.1 MJ·d−1 (4970 ± 25 kcal·d−1). Whole and regional body composition was measured by dual-energy x-ray absorptiometry 1 and 2 months before and 15 d after, the expedition. Body fat was also estimated by skinfold and bioimpedance immediately before and after the expedition. Basal metabolic and endocrine blood markers and, after 0.25 mg dexamethasone suppression, 1-h 10-μg gonadorelin and 1.0 μg adrenocortiocotrophin-(1–24) tests were completed, 39–38 d preexpedition and 4 to 5 d and 15 to 16 d postexpedition. Cortisol was assessed in hair (monthly average concentrations) and saliva (five-point day curves and two-point diurnal sampling). Results Average body mass loss was 9.37 ± 2.31 kg (P < 0.0001), comprising fat mass only; total lean mass was maintained. Basal sex steroids, corticosteroids, and metabolic markers were largely unaffected by the expedition except leptin, which decreased during the expedition and recovered after 15 d, a proportionately greater change than body fat. Luteinizing hormone reactivity was suppressed before and during the expedition, but recovered after 15 d, whereas follicle-stimulating hormone did not change during or after the expedition. Cortisol reactivity did not change during or after the expedition. Basal (suppressed) cortisol was 73.25 ± 45.23 mmol·L−1 before, 61.66 ± 33.11 mmol·L−1 5 d postexpedition and 54.43 ± 28.60 mmol·L−1 16 d postexpedition (P = 0.7). Hair cortisol was elevated during the expedition. Conclusions Maintenance of reproductive and hypothalamic-pituitary-adrenal axis function in women after an extreme physical endeavor, despite energy deficiency, suggests high female biological capacity for extreme endurance exercise.
This study investigates differences in pre-to post-expedition energy expenditure, substrate utilisation and body composition, between the all-male Spear17 (SP-17) and all-female Ice Maiden (IM) transantarctic expeditions (IM: N = 6, 61 days, 1700 km; SP-17: N = 5, 67 days, 1750 km). Energy expenditure and substrate utilisation were measured by a standardised 36 h calorimetry protocol; body composition was determined using air displacement plethysmography. Energy balance calculation were used to assess the physical challenge. There was difference in the daily energy expenditure (IM: 4,939 kcal day −1 ; SP-17: 6,461 kcal day −1 , p = 0.004); differences related to physical activity were small, but statistically significant (IM = 2,282 kcal day −1 ; SP-17 = 3,174 kcal day −1 ; p = 0.004). Bodyweight loss was modest (IM = 7.8%, SP-17 = 6.5%; p > 0.05) as was fat loss (IM = 30.4%, SP-17 = 40.4%; p > 0.05). Lean tissue weight change was statistically significant (IM = − 2.5%, SP-17 = + 1.0%; p = 0.05). No difference was found in resting or sleeping energy expenditure, normalised to lean tissue weight (p > 0.05); nor in energy expenditure when exercising at 80, 100 and 120 steps min −1 , normalised to body weight (p > 0.05). Similarly, no difference was found in the change in normalised substrate utilisation for any of the activities (p > 0.05). Analysis suggested that higher daily energy expenditures for the men in Spear-17 was the result of higher physical demands resulting in a reduced demand for energy to thermoregulate compared to the women in Ice Maiden. The lack of differences between men and women in the change in energy expenditure and substrate utilisation, suggests no sex difference in response to exposure to extreme environments. There is an increasing involvement of women in extreme activities often in adverse environmental conditions that are characterised by a deficit in Energy Availability (EA), the difference between the calorific intake and the energy expended. These activities, which include extreme sports 1 , expeditionary travel and military combat training 2 , have traditionally been undertaken by men with the result that the majority of the research looking at physiological adaptation and responses, particularly during expeditionary travel in polar regions and to altitude,
IntroductionExpedition ICE MAIDEN (Ex IM) was the first all-female unsupported crossing of Antarctica. We describe the prerequisite selection and training, comparing those who formed the final team with other participants, and discuss how the expedition diet was established.MethodsAll women serving in the British Army were invited to participate. Following initial assessments, successful women completed three training/selection ski expeditions. Between expeditions 1 and 2, participants completed 6 months rigorous UK-based training. Weight was measured before and after the 6 months UK-based training, expeditions 2 and 3, and body composition by skinfold before and after expedition 2. Participant feedback, body composition and weight changes were applied to modify the expedition diet and provide weight gain targets prior to Ex IM.ResultsFollowing 250 applications, 50 women were assessed and 22, 12 and seven women attended training expeditions 1, 2 and 3, respectively. The final team of six women lost more weight than other participants during UK-based training (mean (SD) change −1.3 (1.5) kg vs −0.5 (1.6) kg, respectively, p=0.046) and during training expedition 2 (−2.8 (0.8) kg vs −1.7 (0.4) kg, respectively, p=0.048), when they also gained more lean mass (+2.1 (0.8) kg vs +0.4 (0.7) kg, respectively, p=0.004). The Ex IM diet provided 5000 kCal/day, comprising approximately 45% carbohydrate, 45% fat and 10% protein. Median (range) weight change between expedition 3 and Ex IM was +8.7 (−1.9 to +14.3) kg.ConclusionsThe selected Ex IM team demonstrated favourable training-associated body composition changes. Training-associated weight loss informed the expeditionary diet design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.