Formate is the most targeted C1 building block and electron carrier in the post-petroleum era. Formate dehydrogenase (FDH), which catalyzes the production or degradation of formate, has acquired considerable attention. Among FDHs, a metal-dependent FDH that carries a complex active center, molybdenum-pterin cofactor, can directly transfer electrons from formate to other redox proteins without generating NAD(P)H. Previously, we reported an expression system for membrane-bound metal-dependent FDH from E. coli (encoded by the fdoG-fdoH-fdoI operon) and succeeded in its conversion to a soluble protein. However, this protein exhibited a too low stability to be purified and analyzed biochemically. In this study, we tried to improve the stability of heterologously expressed FDH through rational and irrational approaches. As a result, a mutant with the highest specific activity was obtained through a rational approach. This study not only yielded a promising FDH enzyme with enhanced activity and stability for industrial applications, but also offered relevant insights for the handling of recombinant large proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.