In the immune system, neuropilins (NRPs), including NRP-1 and NRP-2, are expressed in thymocytes, dendritic cells, regulatory T cells and macrophages. Their functions on immune cells around the neoplastic cells vary into pro-angiogenesis, tumor progression and anti-angiogenesis according to their ligands. Even though NRPs expression on malignant tumors and immune system has studied, a PubMed-based literature query did not yield any articles describing NRPs expression on tissue-specific macrophages. The aims of this study were (i) to detect NRPs expression on tissue-specific macrophages in the brain, liver, spleen, lymph node and lung; (ii) to observe NRPs expression in classes of macrophages, including alveolar macrophages (AMs), bronchial macrophages (BMs), interstitial macrophages (IMs), intravascular macrophages (IVMs) and macrophage subsets (M1, M2 and Mox) in lung; and (iii) to detect the co-expression of NRPs and dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in AMs. Both NRPs were specifically detected in AMs among tissue-specific macrophages by immunohistochemistry (IHC). NRPs mRNA expression levels were characterized in normal lung by reverse transcriptase polymerase chain reaction (RT-PCR) and in situ-polymerase chain reaction (in situ-PCR). The expression of both NRPs was detected in AMs, BMs and IVMs by IHC. The frequency of NRPs+ AMs in lung tissue adjacent to the cancer margin was significantly higher than the frequencies in inflamed and normal lung tissue. Double and triple IHC demonstrated that NRPs are expressed on all macrophage subsets in lung. Double IHC showed co-expression of DC-SIGN and NRPs in AMs. This study demonstrated for the first time the specific expression of both NRPs in AMs among tissue-specific macrophages and their expression on M1, M2 and Mox macrophages. Furthermore, the possible origin of AMs from blood monocytes could be suggested from a co-expression of NRPs and DC-SIGN.
Background Although mutations in the promoter region of the telomerase reverse transcriptase gene (TERTp) are the most common alterations in glioblastoma (GBM), their clinical significance remains unclear. Therefore, we investigated the impact of TERTp status on patient outcome and clinicopathological features in patients with GBM over a long period of follow-up Methods We retrospectively analyzed 153 cases of GBM. Six patients with isocitrate dehydrogenase 1 (IDH1) or H3F3A gene mutations were excluded from this study. Among the 147 cases of IDH wild-type GBM, 92 (62.6%) had the TERTp mutation. Clinical, immunohistochemical, and genetic factors (BRAF, TP53 gene mutation, CD133, ATRX expression, O 6-methylguanine-DNA methyltransferase [MGMT] promoter methylation) and copy number alterations (CNAs) were investigated Results GBM patients with the TERTp mutation were older at first diagnosis versus those with TERTp wild type (66.0 vs. 60.0 years, respectively, P=0.034), and had shorter progression-free survival (7 vs. 10 months, respectively, P=0.015) and overall survival (16 vs. 24 months, respectively, P=0.017). Notably, magnetic resonance imaging performed showed that TERTp-mutant GBM was strongly associated with multifocal/distant lesions (P=0.004)According to the CNA analysis, TERTp mutations were positively correlated with EGFR amp/gain, CDKN2A deletion, and PTEN deletion; however, these mutations were negatively correlated with PDGFR amp/gain, CDK4 gain and TP53 deletion Conclusions TERTp mutations were strongly correlated with multifocal/distant lesions and poor prognosis in patients with IDH wild-type GBM. Less aggressive GBM with TERTp wild type may be a distinct clinical and molecular subtype of IDH wild type GBM.
Hormone therapy has been used for patients with estrogen receptor alpha (ERα)–positive breast cancers. Recently, some studies reported the expression of ERα on neoplastic cells from B‐cell lymphomas. However, there has been only one report of ERα expression on the follicular dendritic cells (FDCs) that structurally and functionally support the microenvironment of follicular lymphomas (FLs). The objective of this study was to investigate the frequency of ERα expression on FDCs in nonneoplastic reactive lymphoid tissues and to compare the frequency of ERα expression on FDCs in the axillary lymph nodes between patients with and without antiestrogen therapy and among patients with grades 1‐3 of FL. Reverse transcription–polymerase chain reaction was performed to detect ERα mRNA in FL. In nonneoplastic germinal centers (GCs) from patients with tonsillitis or reactive lymphadenitis, ERα was expressed in the light zone. ERα‐positive cells strongly correlated with the width of GCs ( r s = 0.81, P < 0.01) and the CD21‐positive ( r s = 0.69, P < 0.01) and CD23‐positive ( r s = 0.83, P < 0.01) FDC meshwork. The axillary lymph nodes had fewer ERα‐positive cells, smaller GCs, and a looser CD21‐ and CD23‐positive FDC meshwork with hormone therapy than without hormone therapy ( P < 0.01). Neoplastic follicles of G1‐2 FL had more ERα‐positive cells and a larger CD23 + FDC meshwork than those of G3 FL ( P < 0.01). ERα mRNA was detected in both G1‐2 FL and G3 FL by reverse transcription–polymerase chain reaction. In conclusion, these results suggested that antiestrogen hormone therapy may decrease the number of ERα‐positive FDCs and that the responses mediated by the estrogen‐ERα interaction on FDCs may differ between G1‐2 FL and G3 FL.
Neoplasms originating from thymic T-cell progenitors and post-thymic mature T-cell subsets account for a minority of lymphoproliferative neoplasms. These T-cell derived neoplasms, while molecularly and genetically heterogeneous, exploit transcription factors and signaling pathways that are critically important in normal T-cell biology, including those implicated in antigen-, costimulatory-, and cytokine-receptor signaling. The transcription factor GATA-3 regulates the growth and proliferation of both immature and mature T cells and has recently been implicated in T-cell neoplasms, including the most common mature T-cell lymphoma observed in much of the Western world. Here we show that GATA-3 is a proto-oncogene across the spectrum of T-cell neoplasms, including those derived from T-cell progenitors and their mature progeny, and further define the transcriptional programs that are GATA-3 dependent, which include therapeutically targetable gene products. The discovery that p300-dependent acetylation regulates GATA-3 mediated transcription by attenuating DNA binding has novel therapeutic implications. As most patients afflicted with GATA-3 driven T-cell neoplasms will succumb to their disease within a few years of diagnosis, these findings suggest opportunities to improve outcomes for these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.