Branch prediction is an architectural feature that speeds up the execution of branch instruction on pipeline processors and reduces the cost of branching. Recent advancements of Deep Learning (DL) in the post Moore's Law era is accelerating areas of automated chip design, low-power computer architectures, and much more. Traditional computer architecture design and algorithms could benefit from dynamic predictors based on deep learning algorithms which learns from experience by optimizing its parameters on large number of data. In this survey paper, we focus on traditional branch prediction algorithms, analyzes its limitations, and presents a literature survey of how deep learning techniques can be applied to create dynamic branch predictors capable of predicting conditional branch instructions. Prior surveys in this field [1] focus on dynamic branch prediction techniques based on neural network perceptrons. We plan to improve the survey based on latest research in DL and advanced Machine Learning (ML) based branch predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.