In the majority of studies designed to elucidate the causal mechanisms of memory formation, certain members of the experimental cohort, even though subjected to exactly the same conditioning procedures, remember significantly better than others, whereas others show little or no long-term memory (LTM) formation. To begin to address the question of why this phenomenon occurs and thereby help clarify the causal mechanism of LTM formation, we used a conditioned taste aversion (CTA) procedure on individuals of the pond snail Lymnaea stagnalis and analyzed their subsequent behavior. Using sucrose as an appetitive stimulus and KCl as an aversive stimulus, we obtained a constant ratio of 'poor' to 'good' performers for CTA-LTM. We found that approximately 40% of trained snails possessed LTM following a one-trial conditioning procedure. When we examined the timewindow necessary for the memory consolidation, we found that if we cooled snails to 4°C for 30·min within 10·min after the one-trial conditioning, LTM was blocked. However, with delayed cooling (i.e. longer than 10·min), LTM was present. We could further interfere with LTM formation by inducing inhibitory learning (i.e. backward conditioning) after the one-trial conditioning. Finally, we examined whether we could motivate snails to acquire LTM by depriving them of food for 5·days before the onetrial conditioning. Food-deprived snails, however, failed to exhibit LTM following the one-trial conditioning. These results will help us begin to clarify why some individuals are better at learning and forming memory for specific tasks at the neuronal level.
Conditioned taste aversion (CTA) in the pond snailLymnaea stagnalis has been widely used as a model for gaining an understanding of the molecular and behavioral mechanisms underlying learning and memory. At the behavioral level, however, it is still unclear how taste discrimination and CTA interact. We thus examined how CTA to one taste affected the feeding response induced by another appetitive food stimulus. We first demonstrated that snails have the capacity to recognize sucrose and carrot juice as distinct appetitive stimuli. We then found that snails can become conditioned (i.e. CTA) to avoid one of the stimuli and not the other. These results show that snails can distinguish between appetitive stimuli during CTA, suggesting that taste discrimination is processed upstream of the site where memory consolidation in the snail brain occurs. Moreover, we examined second-order conditioning with two appetitive stimuli and one aversive stimulus. Snails acquired second-order conditioning and were still able to distinguish between the different stimuli. Finally, we repeatedly presented the conditional stimulus alone to the conditioned snails, but this procedure did not extinguish the long-term memory of CTA in the snails. Taken together, our data suggest that CTA causes specific, irreversible and rigid changes from appetitive stimuli to aversive ones in the conditioning procedure.
The pond snail Lymnaea stagnalis acquires conditioned taste aversion (CTA) and maintains its memory for more than a month. Snails in our laboratory were cultured at 20 degrees C on a 12:12 light-dark cycle (light from 7 am to 7 pm). To examine the hours during which snails acquire CTA effectively, we trained some snails in the morning and others in the afternoon, and then compared their scores. CTA developed in both cases, but scores were significantly better in the morning than in the afternoon. To elucidate the cause of this difference in scores, we observed the voluntary activity of snails and found the circadian rhythm reflected in the snails' free-movement distances; distances at the circadian time 0-12 (daytime) were significantly longer than those at the circadian time 12-24 (nighttime). This rhythm was kept up for at least 3 days, even in constant darkness. In conclusion, L. stagnalis should be trained in the morning to acquire associative learning, possibly because of its greater propensity to roam about at that time as opposed to the afternoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.