Tengiz Field is the world's deepest developed supergiant oil field, with an oil column of nearly 1600m. The reservoir consists of Devonian and Carboniferous platform/slope carbonates, divided into three stratigraphically-defined units. Production of over 500,000 BOPD is mainly from the upper unit. A significant portion of this production is controlled by natural fractures. A new reservoir model has been constructed to support a future growth project, including miscible gas injection, and to guide reservoir management strategies, development planning, and oil-in-place estimation. Our new model represents a significant change from previous models in that a dual porosity, dual permeability flow formulation (fracture and matrix) is being applied. This change to dual porosity, which is necessary to effectively characterize the fracture-matrix flow, requires a significant modification of the overall reservoir modeling workflow. Matrix porosity and permeability are distributed into the fine-scale model and fracture properties are populated into the model after upscaling, because representative fracture attributes are only available at a large scale. Fracture porosity is high in the depositional slope (about 0.4%) due to the cavernous character of portions of the fracture system. This fracture porosity represents a significant volume, and has a large impact on reserves. Fracture permeability is also a critical factor, and has a large affect on flow behavior and recovery. Although fractures are important, their intersection by wellbores is relatively rare, due mainly to under-sampling of sub-vertical fractures by vertical wells and sparse well control in the slope. Because of this under-sampling, and general ambiguity in image-log data, uncertainty associated with fracture properties is large. To address this uncertainty, significant effort has gone into collecting reservoir surveillance data. In addition, fracture properties from image logs were reconciled with well tests and other logs.
Probabilistic production forecasting at Tengiz is largely driven by reservoir uncertainty. Reservoir uncertainty is most effectively synthesized and quantified through simulation modeling. Early in the construction of a new Tengiz dynamic model, fundamental reservoir uncertainties were identified and evaluated. This allowed for model 'building blocks' to be developed with different characterizations to encompass key uncertainties.Key uncertainties, which can significantly impact future production under primary depletion and sour gas injection, have been described. These include typical uncertainties such as porosity, irreducible water saturation, hydrocarbon fluid properties, oilwater contact levels, rock compressibility, geologic baffles, and relative permeability. Unique uncertainties specific to Tengiz include geometry and density of the natural fractures, and reservoir heterogeneity.Considerable production history and a large reservoir surveillance database provided input for rigorously characterizing and subsequently validating the range of each uncertainty. After ranges were established, appropriate model realizations were created. A wide range of reservoir models were obtained by selecting combinations of high/mid/low realizations for each uncertainty. Using experimental design (ED), reservoir simulations were conducted to test uncertainty ranges against field history. A quantitative history match and statistical analysis were developed to objectively judge the appropriateness of uncertainty values. Uncertainties with the largest overall impact on the history match are: fracture density, platform horizontal permeability, compressibility, and platform heterogeneity.This case study demonstrates how analysis of reservoir uncertainties can be: (1) captured in static and dynamic reservoir models and (2) validated through ED and quantitative history matching. This study employs state-of-the-art technologies to evaluate model uncertainties of a giant carbonate reservoir undergoing both depletion and miscible gas drives. The range of reservoir models subsequently developed will be of great value in creating robust probabilistic reservoir forecasts to optimize field operation and future development.
Характеристика и моделирование факторов неопределенности Тенгизского коллектораПик В.Т., ОИН, Тенгизшевройл; Камерло Р. Н., Шеврон Норт Американ Эксплорейшн энд Продакшн; Танкерсли Т.Х., ОИН, Тенгизшевройл; Жумагулова A., Тенгизшевройл Авторское право 2010, Общество инженеров-нефтяников Данная работа подготовлена для презентации в ходе Конференции Общества инженеров-нефтянников по технологиям разработки карбонатных месторождений в Каспийском регионе в г. Атырау, Казахстан, 8-10 ноября 2010 г.Данная работа была отобрана в качестве презентационного материала оргакомитетом Общества инженеров-нефтяников после изучения представленной авторами аннотации. Содержание работы Обществом инженеров-нефтяников не рассматривалось и может быть откорректировано авторами. Представленный материал может не отражать позиции Общества инженеров-нефтяников, его служащих или членов. Воспроизведение распространение и хранение любой информации, содержащейся в данной работе в электронном виде разрешается исключительно при наличии письменного согласия Общества инженеров-нефтяников. Разрешение на печатную репродукцию распространяется только на аннотацию, содержащую не более 300 слов. Иллюстрации воспроизводить запрещается. В аннотации должна находиться открытая ссылка на авторское право Общества инженеров-нефтяников. АннотацияВероятностное прогнозирование производительности Тенгизского месторождения, главным образом, обусловлено факторами неопределенности коллектора. Динамическое моделирование позволяет синтезировать и определять количество неопределенностей коллектора наиболее эффективным способом. При создании новой динамической модели Тенгиза, были определены основные факторы неопределенности коллектора, а также была проведена их оценка. Это позволило разработать основные структурные элементы модели с различной характеристикой для определения ключевых неопределенностей.Было дано описание ключевых неопределенностей, способных в значительной степени повлиять на будущую производительность в условиях первичного истощения и закачки сырого газа. Сюда входят такие типичные факторы неопределенности, как пористость, остаточная водонасыщенность, свойства углеводородных флюидов, уровни водонефтяного контакта, сжимаемость пород, геологические барьеры, и относительная проницаемость. Среди всех уникальных факторов неопределенности, присущих Тенгизскому месторождению, выделяют геометрию и плотность естественной трещиноватости, а также неоднородность коллектора.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.