A design of a low-profile and printed array antenna for wireless access points and futuristic healthcare devices is presented in this manuscript. The antenna design is derived from a printed dipole configuration and is optimized using an empirical design approach to achieve enhanced bandwidth, gain and efficiency performances. The antenna is printed on Rogers RT-5880 laminate with a permittivity of 2.2 and a thickness of 0.508 mm. The overall footprint of the design covers 27.5 × 39.1 mm2 on a substrate of 36 × 42 mm2. Results have shown that the design covers a wide bandwidth of more than 7 GHz, making it capable of covering 40.5–42.5 GHz, 42.5–43.5 GHz, 45.5–47 GHz and 47–47.2 GHz 5G bands as recommended in WRC-15. The design shows an average gain of 11.5 dB and an average efficiency of 84% over the entire bandwidth. The simulation and measurement results mostly agree, with minor disparities which might have been caused due to substrate tolerance and testing setup.
This article presents a design for high-gain MIMO antennas with compact geometry. The proposed design is composed of four antennas in MIMO configuration, wherein, each antenna is made up of small units of microstrip patches. The overall geometry is printed on the top layer of the substrate, i.e., Rogers RT-5880 with permittivity of 2.2, permeability of 1.0, dielectric loss of 0.0009, and depth of 0.508 mm. The proposed design covers an area of 29.5 × 61.4 mm2, wherein each antenna covers an area of 11.82 × 25.28 mm2. The dimensions of the microstrip lines in each MIMO element were optimized to achieve a good impedance matching. The design is resonating at 61 GHz, with a wide practical bandwidth of more than 7 GHz, thereby covering IEEE 802.11ad WiGig (58–65 GHz). The average value of gain ranges from 9.45 to 13.6 dBi over the entire frequency bandwidth whereas, the average value of efficiency ranges from 55.5% to 84.3%. The proposed design attains a compact volume, wide bandwidth, and good gain and efficiency performances, which makes it suitable for WiGig terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.