There is a scarcity of data regarding coronavirus disease 2019 (COVID-19) infection in children from southeast and south Asia. This study aims to identify risk factors for severe COVID-19 disease among children in the region. This is an observational study of children with COVID-19 infection in hospitals contributing data to the Pediatric Acute and Critical Care COVID-19 Registry of Asia. Laboratory-confirmed COVID-19 cases were included in this registry. The primary outcome was severity of COVID-19 infection as defined by the World Health Organization (WHO) (mild, moderate, severe, or critical). Epidemiology, clinical and laboratory features, and outcomes of children with COVID-19 are described. Univariate and multivariable logistic regression models were used to identify risk factors for severe/critical disease. A total of 260 COVID-19 cases from eight hospitals across seven countries (China, Japan, Singapore, Malaysia, Indonesia, India, and Pakistan) were included. The common clinical manifestations were similar across countries: fever (64%), cough (39%), and coryza (23%). Approximately 40% of children were asymptomatic, and overall mortality was 2.3%, with all deaths reported from India and Pakistan. Using the multivariable model, the infant age group, presence of comorbidities, and cough on presentation were associated with severe/critical COVID-19. This epidemiological study of pediatric COVID-19 infection demonstrated similar clinical presentations of COVID-19 in children across Asia. Risk factors for severe disease in children were age younger than 12 months, presence of comorbidities, and cough at presentation. Further studies are needed to determine whether differences in mortality are the result of genetic factors, cultural practices, or environmental exposures.
Introduction Children infected with COVID-19 are susceptible to severe manifestations. We aimed to develop and validate a predictive model for severe/ critical pediatric COVID-19 infection utilizing routinely available hospital level data to ascertain the likelihood of developing severe manifestations. Methods The predictive model was based on an analysis of registry data from COVID-19 positive patients admitted to five tertiary pediatric hospitals across Asia [Singapore, Malaysia, Indonesia (two centers) and Pakistan]. Independent predictors of severe/critical COVID-19 infection were determined using multivariable logistic regression. A training cohort (n = 802, 70%) was used to develop the prediction model which was then validated in a test cohort (n = 345, 30%). The discriminative ability and performance of this model was assessed by calculating the Area Under the Curve (AUC) and 95% confidence interval (CI) from final Receiver Operating Characteristics Curve (ROC). Results A total of 1147 patients were included in this analysis. In the multivariable model, infant age group, presence of comorbidities, fever, vomiting, seizures and higher absolute neutrophil count were associated with an increased risk of developing severe/critical COVID-19 infection. The presence of coryza at presentation, higher hemoglobin and platelet count were associated with a decreased risk of severe/critical COVID-19 infection. The AUC (95%CI) generated for this model from the training and validation cohort were 0.96 (0.94, 0.98) and 0.92 (0.86, 0.97), respectively. Conclusion This predictive model using clinical history and commonly used laboratory values was valuable in estimating the risk of developing a severe/critical COVID-19 infection in hospitalized children. Further validation is needed to provide more insights into its utility in clinical practice.
There is wide variation in the overall clinical impact of novel coronavirus disease 2019 (COVID-19) across countries worldwide. Changes adopted pertaining to the management of pediatric patients, in particular, the provision of respiratory support during the COVID-19 pandemic is poorly described in Asia. We performed a multicenter survey of 20 Asian pediatric hospitals to determine workflow changes adopted during the pandemic. Data from centers of high-income (HIC), upper middle income (UMIC), and lower middle income (LMIC) countries were compared. All 20 sites over nine countries (HIC: Japan [4] and Singapore [2]; UMIC: China [3], Malaysia [3] and Thailand [2]; and LMIC: India [1], Indonesia [2], Pakistan [1], and Philippines [2]) responded to this survey. This survey demonstrated substantial outbreak adaptability. The major differences between the three income categories were that HICs were (1) more able/willing to minimize use of noninvasive ventilation or high-flow nasal cannula therapy in favor of early intubation, and (2) had greater availability of negative-pressure rooms and powered air-purifying respirators. Further research into the best practices for respiratory support are warranted. In particular, innovation on cost-effective measures in infection control and respiratory support in the LMIC setting should be considered in preparation for future waves of COVID-19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.