Background The stability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on human skin remains unknown, considering the hazards of viral exposure to humans. We generated a model that allows the safe reproduction of clinical studies on the application of pathogens to human skin and elucidated the stability of SARS-CoV-2 on the human skin. Methods We evaluated the stability of SARS-CoV-2 and influenza A virus (IAV), mixed with culture medium or upper respiratory mucus, on human skin surfaces and the dermal disinfection effectiveness of 80% (w/w) ethanol against SARS-CoV-2 and IAV. Results SARS-CoV-2 and IAV were inactivated more rapidly on skin surfaces than on other surfaces (stainless steel/glass/plastic); the survival time was significantly longer for SARS-CoV-2 than for IAV [9.04 h (95% confidence interval: 7.96–10.2 h) vs. 1.82 h (1.65–2.00 h)]. IAV on other surfaces was inactivated faster in mucus versus medium conditions, while SARS-CoV-2 showed similar stability in the mucus and medium; the survival time was significantly longer for SARS-CoV-2 than for IAV [11.09 h (10.22–12.00 h) vs. 1.69 h (1.57–1.81 h)]. Moreover, both SARS-CoV-2 and IAV in the mucus/medium on human skin were completely inactivated within 15 s by ethanol treatment. Conclusions The 9-h survival of SARS-CoV-2 on human skin may increase the risk of contact transmission in comparison with IAV, thus accelerating the pandemic. Proper hand hygiene is important to prevent the spread of SARS-CoV-2 infections.
Objectives Disinfection effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on human skin remains unclear due to the hazards of viral exposure. An evaluation model, which has been previously generated using human skin obtained from forensic autopsy samples, accurately mimics in vivo skin conditions for evaluating the effectiveness of disinfection against the virus. Using this model, we evaluated the disinfection effectiveness against viruses on human skin. Methods Ethanol (EA), isopropanol (IPA), chlorhexidine gluconate (CHG), and benzalkonium chloride (BAC) were used as target disinfectants. First, disinfectant effectiveness against SARS-CoV-2 and influenza A virus (IAV) was evaluated in vitro . Disinfectant effectiveness against SARS-CoV-2 and IAV on human skin was then evaluated by titrating viruses present on the skin after applying each disinfectant on the skin for 5-60 s. Results Both, SARS-CoV-2 and IAV on human skin were completely inactivated within 5 s by 40-80% EA and 70% IPA (log reduction values [LRVs] were >4). However, SARS-CoV-2 and IAV were barely inactivated by 20% EA (LRVs were <1). In vitro evaluation showed that compared to EA and IPA, CHG and BAC were significantly inferior in terms of disinfection effectiveness. Conversely, the disinfection effectiveness of CHG and BAC against SARS-CoV-2 was higher on human skin than in vitro, and increased with increases in their concentration and reaction time (LRVs of 0.2% CHG/0.05% BAC were >2, and LRVs of 1.0% CHG/0.2% BAC were >2.5). Conclusions Proper hand hygiene practices using alcohol-based disinfectants such as EA/IPA effectively inactivate SARS-CoV-2 and IAV on human skin.
Both antiseptic hand rubbing (AHR) using ethanol-based disinfectants (EBDs) and antiseptic hand washing (AHW) are important means of infection control to prevent seasonal influenza A virus (IAV) outbreaks. However, previous reports suggest a reduced efficacy of ethanol disinfection against pathogens in mucus. We aimed to elucidate the situations and mechanisms underlying the reduced efficacy of EBDs against IAV in infectious mucus. We evaluated IAV inactivation and ethanol concentration change using IAV-infected patients’ mucus (sputum). Additionally, AHR and AHW effectiveness against infectious mucus adhering to the hands and fingers was evaluated in 10 volunteers. Our clinical study showed that EBD effectiveness against IAV in mucus was extremely reduced compared to IAV in saline. IAV in mucus remained active despite 120 s of AHR; however, IAV in saline was completely inactivated within 30 s. Due to the low rate of diffusion/convection because of the physical properties of mucus as a hydrogel, the time required for the ethanol concentration to reach an IAV inactivation level and thus for EBDs to completely inactivate IAV was approximately eight times longer in mucus than in saline. On the other hand, AHR inactivated IAV in mucus within 30 s when the mucus dried completely because the hydrogel characteristics were lost. Additionally, AHW rapidly inactivated IAV. Until infectious mucus has completely dried, infectious IAV can remain on the hands and fingers, even after appropriate AHR using EBD, thereby increasing the risk of IAV transmission. We clarified the ineffectiveness of EBD use against IAV in infectious mucus. IMPORTANCE Antiseptic hand rubbing (AHR) and antiseptic hand washing (AHW) are important to prevent the spread of influenza A virus (IAV). This study elucidated the situations/mechanisms underlying the reduced efficacy of AHR against infectious mucus derived from IAV-infected individuals and indicated the weaknesses of the current hand hygiene regimens. Due to the low rate of diffusion/convection because of the physical properties of mucus as a hydrogel, the efficacy of AHR using ethanol-based disinfectant against mucus is greatly reduced until infectious mucus adhering to the hands/fingers has completely dried. If there is insufficient time before treating the next patient (i.e., if the infectious mucus is not completely dry), medical staff should be aware that effectiveness of AHR is reduced. Since AHW is effective against both dry and nondry infectious mucus, AHW should be adopted to compensate for these weaknesses of AHR.
We analyzed the differences in viral environmental stability between the SARS-CoV-2 Wuhan strain and all variants of concern (VOCs). On plastic and skin surfaces, Alpha, Beta, Delta, and Omicron variants exhibited more than two-fold longer survival than the Wuhan strain and maintained infectivity for more than 16 h on skin surfaces. The high environmental stability of these VOCs could increase the risk of contact transmission and contribute to their spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.