Current patent systems face a serious problem of declining quality of patents as the larger number of applications make it difficult for patent officers to spend enough time for evaluating each application. For building a better patent system, it is necessary to define a public consensus on the quality of patent applications in a quantitative way. In this article, we tackle the problem of assessing the quality of patent applications based on machine learning and text mining techniques. For each patent application, our tool automatically computes a score called patentability, which indicates how likely it is that the application will be approved by the patent office. We employ a new statistical prediction model to estimate examination results (approval or rejection) based on a large data set including 0.3 million patent applications. The model computes the patentability score based on a set of feature variables including the text contents of the specification documents. Experimental results showed that our model outperforms a conventional method which uses only the structural properties of the documents. Since users can access the estimated result through a Web-browser-based GUI, this system allows both patent examiners and applicants to quickly detect weak applications and to find their specific flaws.
This st − udy develops a two − step genetic algorithm − based mcthod t, o generate robot actions varied in terms of their impressiolls givell to users . This study is a part of the project that aims to achieve autonomolls generation of enlotional actions for robots . This study aiIns at generating sampled actions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.