Inflammatory myofibroblastic tumor is a rare tumor deriving from mesenchymal tissue. Approximately 50% of inflammatory myofibroblastic tumors harbor an anaplastic lymphoma kinase fusion gene. Pulmonary inflammatory myofibroblastic tumors harboring tropomyosin3-anaplastic lymphoma kinase or protein tyrosine phosphatase receptor-type F polypeptideinteracting protein-binding protein 1-anaplastic lymphoma kinase have been reported previously. However, it has not been reported that inflammatory myofibroblastic tumors harbor echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene which is considered to be very specific to lung cancers. A few tumors harboring echinoderm microtubuleassociated protein-like 4-anaplastic lymphoma kinase fusion gene other than lung cancers have been reported and the tumors were all carcinomas. A 67-year-old man had been followed up for a benign tumor for approximately 3 years before the tumor demonstrated malignant transformation. Lobectomy and autopsy revealed that an inflammatory myofibroblastic tumor harboring echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion gene had transformed into an undifferentiated sarcoma. This case suggests that echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase fusion is an oncogenic event in not only carcinomas but also sarcomas originating from stromal cells.
Rheumatoid arthritis (RA)-related pulmonary disorders specifically airway abnormalities and interstitial pneumonia (IP) are important extra-articular manifestations. The forced oscillation technique (FOT) is a useful method to assess respiratory impedance, respiratory resistance (Rrs) and reactance (Xrs), at different oscillatory frequencies during tidal breathing. The aim of this study was to characterize the respiratory mechanics of patients with RA and to relate them to parameters of the pulmonary function test and findings of chest CT images. Respiratory impedance of RA patients (n = 69) was measured as a function of frequency from 4 to 36 Hz using the FOT device and compared with that of healthy subjects (n = 10). Data were retrospectively reviewed. Patients were female-dominant (60.9 %) and 95.7 % had abnormal CT findings including airway and parenchymal abnormalities. Thirty-seven of 69 patients (53.6 %) were smokers. Rrs was significantly frequency-dependent in RA patients but not in the healthy subjects. Xrs were significantly frequency-dependent in both RA and healthy groups. Rrs was significantly higher during an expiratory phase in both RA and healthy groups. Xrs was significantly lower (more negative) during an expiratory phase than that during an inspiratory phase in RA patients but not in healthy subjects. Xrs of the RA group was significantly more negative than that of the normal control. There was no difference in impedance parameters between the airway lesion dominant (n = 27) and IP dominant groups (n = 23) in the RA group. The impedance parameters of the RA group significantly correlated with most parameters of the pulmonary function test. In pulmonary function test results, % of the predicted value for forced expiratory flow from 25 to 75 % of forced vital capacity was significantly lower and % of the predicted value for diffusing capacity of the lung for carbon monoxide was higher in the airway lesion dominant group than those in the IP dominant group. Krebs von den Lungen-6, a serum indicator of IP, was significantly higher in the IP group than that in the airway lesion dominant group. Taken together, the impedance results reflect abnormalities in pulmonary functions and structures in patients with RA.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-016-1952-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.