We study laser ablation of nanoparticles (NPs). The interaction of a high-intensity laser pulse with NPs brings the NP into a highly non-equilibrium state. Depending on the energy input from the laser, it will melt and may fragment and evaporate off atoms and clusters. We employ molecular dynamics simulation to study this interaction since thermodynamic properties can be extracted from output data of this simulation. The interatomic interaction is modeled by a Lennard-Jones (LJ) potential. The intensity of the laser is above the ablation threshold. The NP has been chosen to have a spherical shape with diameter 50 s in LJ units. The laser energy is given to the NP instantaneously at the beginning of the simulation and homogenously to all atoms; it corresponds to an energy input of 5.4 e per atom. The simulation is continued up to a time 200 t in LJ units. Temperature-density phase-space trajectories show that the nanoparticle density and temperature strongly decrease after the irradiation. The pressure in the sphere becomes strongly tensile after irradiation. The ablation proceeds by spallation of the irradiated cluster. We provide an analysis of the fragments produced by the ablation of the spherical NP. Our results are contrasted to the case of laser ablation of a thin-film target.
We investigated the effect of LDA+U on the band dispersions in 1T monolayer FeCl2 and CoCl2 within the self-consistent noncollinear calculation. As shown in the band dispersed, FeCl2 is metallic while CoCl2 is insulating. When the effective Coulomb energy takes into account, FeCl2 is metallic without band gap while the band gap in CoCl2 increases as the Coulomb energy increases. Thus, the band gap in CoCl2 can be effectively controlled by the Coulomb energy, thus it is feasible for spontaneous development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.