Long-distance photonic implementations of quantum key distribution protocols have gained increased interest due to the promise of information-theoretic security against unauthorized eavesdropping. However, a significant challenge in this endeavor is photon-polarization getting affected due to the birefringence of fibers in fiber-based implementations, or variation of reference frames due to satellite movement in long-haul demonstrations. Conventionally, active feedback-based mechanisms are employed for real-time polarization tracking. Here, we propose and demonstrate an alternative approach via a proof-of-principle experiment over an in-lab entanglement-based (BBM92) protocol. In this approach, we perform a quantum state tomography to arrive at optimal measurement bases for any one party resulting in maximal (anti-)correlation in measurement outcomes of both parties. Our polarization-entangled bi-photons have 94% fidelity with a singlet state and a Concurrence of 0.92. By considering a representative 1 ns coincidence window span, we achieve a quantum-bit-error-rate (QBER) of ≈5%, and a key rate of ≈35 Kbps. The performance of our implementation is independent of any local polarization rotation. Finally, using optimization methods we achieve the best trade-off between the key rate, QBER, and balanced key symmetry. Our approach obviates the need for active polarization tracking. It is also applicable to such demonstrations with non-maximally entangled states and prepare-and-measure-based protocols with partially polarized single-photon sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.