With the advent of the World Wide Web, there are numerous online platforms that generate huge amounts of textual material, including social networks, online blogs, magazines, etc. This textual content contains useful information that can be used to advance humanity. Text summarization has been a significant area of research in natural language processing (NLP). With the expansion of the internet, the amount of data in the world has exploded. Large volumes of data make locating the required and best information timeconsuming. It is impractical to manually summarize petabytes of data; hence, computerized text summarization is rising in popularity. This study presents a comprehensive overview of the current status of text summarizing approaches, techniques, standard datasets, assessment criteria, and future research directions. The summarizing approaches are assessed based on several characteristics, including approachbased, document-number-based, Summarization domain-based, document-language-based, output summary nature, etc. This study concludes with a discussion of many obstacles and research opportunities linked to text summarizing research that may be relevant for future researchers in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.