We study the McKean-Vlasov equationwith periodic boundary conditions on the torus. We first study the global asymptotic stability of the homogeneous steady state. We then focus our attention on the stationary system, and prove the existence of nontrivial solutions branching from the homogeneous steady state, through possibly infinitely many bifurcations, under appropriate assumptions on the interaction potential. We also provide sufficient conditions for the existence of continuous and discontinuous phase transitions. Finally, we showcase these results by applying them to several examples of interaction potentials such as the noisy Kuramoto model for synchronisation, the Keller-Segel model for bacterial chemotaxis, and the noisy Hegselmann-Krausse model for opinion dynamics. 13 3.1. Trend to equilibrium in relative entropy 13 3.2. Linear stability analysis 14 4. Bifurcation theory 15 5. Phase transitions for the McKean-Vlasov equation 20 5.1. Discontinuous transition points 22 5.2. Continuous transition points 24 6. Applications 31 6.1. The generalised Kuramoto model 31 6.2. The noisy Hegselmann-Krause model for opinion dynamics 34 6.3. The Onsager model for liquid crystals 34 6.4. The Barré-Degond-Zatorska model for interacting dynamical networks 36 6.5. The Keller-Segel model for bacterial chemotaxis 36 Appendix A. Results from bifurcation theory 39 References 41
Thin liquid films are ubiquitous in natural phenomena and technological applications. They have been extensively studied via deterministic hydrodynamic equations, but thermal fluctuations often play a crucial role that needs to be understood. An example of this is dewetting, which involves the rupture of a thin liquid film and the formation of droplets. Such a process is thermally activated and requires fluctuations to be taken into account self-consistently. In this work we present an analytical and numerical study of a stochastic thin-film equation derived from first principles. Following a brief review of the derivation, we scrutinise the behaviour of the equation in the limit of perfectly correlated noise along the wall-normal direction, as opposed to the perfectly uncorrelated limit studied by Grün et al. (J Stat Phys 122(6):1261–1291, 2006 ). We also present a numerical scheme based on a spectral collocation method, which is then utilised to simulate the stochastic thin-film equation. This scheme seems to be very convenient for numerical studies of the stochastic thin-film equation, since it makes it easier to select the frequency modes of the noise (following the spirit of the long-wave approximation). With our numerical scheme we explore the fluctuating dynamics of the thin film and the behaviour of its free energy in the vicinity of rupture. Finally, we study the effect of the noise intensity on the rupture time, using a large number of sample paths as compared to previous studies.
We consider the question of exponential mixing for random dynamical systems on arbitrary compact manifolds without boundary. We put forward a robust, dynamics-based framework that allows us to construct space-time smooth, uniformly bounded in time, universal exponential mixers. The framework is then applied to the problem of proving exponential mixing in a classical example proposed by Pierrehumbert in 1994, consisting of alternating periodic shear flows with randomized phases. This settles a longstanding open problem on proving the existence of a space-time smooth (universal) exponentially mixing incompressible velocity field on a two-dimensional periodic domain while also providing a toolbox for constructing such smooth universal mixers in all dimensions. CONTENTS1. Introduction 2. Markov chains and random dynamical systems 3. Random dynamical systems with absolutely continuous noise 4. Almost-sure mixing for incompressible RDS with absolutely continuous noise 5. Application to Pierrehumbert Appendix A. Proof of Theorem 2.3 Appendix B. Proofs of Proposition 2.9 and Corollary 2.10 Appendix C. The Weyl Equidistribution Theorem References
The objective of this article is to analyse the statistical behaviour of a large number of weakly interacting diffusion processes evolving under the influence of a periodic interaction potential. We focus our attention on the combined mean field and diffusive (homogenisation) limits. In particular, we show that these two limits do not commute if the mean field system constrained to the torus undergoes a phase transition, that is to say, if it admits more than one steady state. A typical example of such a system on the torus is given by the noisy Kuramoto model of mean field plane rotators. As a by-product of our main results, we also analyse the energetic consequences of the central limit theorem for fluctuations around the mean field limit and derive optimal rates of convergence in relative entropy of the Gibbs measure to the (unique) limit of the mean field energy below the critical temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.