Coronaviruses are a family of viruses that majorly cause respiratory disorders in humans. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes the coronavirus disease 2019 (COVID-19). WHO has identified COVID-19 as a pandemic as it has spread across the globe due to its highly contagious nature. For early diagnosis of COVID-19, the reverse transcription-polymerase chain reaction (RT-PCR) test is commonly done. However, it suffers from a high false-negative rate of up to 67% if the test is done during the first five days of exposure. As an alternative, research on the efficacy of deep learning techniques employed in the identification of COVID-19 disease using chest X-ray images is intensely pursued. As pneumonia and COVID-19 exhibit similar/ overlapping symptoms and affect the human lungs, a distinction between the chest X-ray images of pneumonia patients and COVID-19 patients becomes challenging. In this work, we have modeled the COVID-19 classification problem as a multiclass classification problem involving three classes, namely COVID-19, pneumonia, and normal. We have proposed a novel classification framework which combines a set of handpicked features with those obtained from a deep convolutional neural network. The proposed framework comprises of three modules. In the first module, we exploit the strength of transfer learning using ResNet-50 for training the network on a set of preprocessed images and obtain a vector of 2048 features. In the second module, we construct a pool of frequency and texture based 252 handpicked features that are further reduced to a set of 64 features using PCA. Subsequently, these are passed to a feed forward neural network to obtain a set of 16 features. The third module concatenates the features obtained from first and second modules, and passes them to a dense layer followed by the softmax layer to yield the desired classification model. We have used chest X-ray images of COVID-19 patients from four independent publicly available repositories, in addition to images from the Mendeley and Kaggle Chest X-Ray Datasets for pneumonia and normal cases. To establish the efficacy of the proposed model, 10-fold cross-validation is carried out. The model generated an overall classification accuracy of 0.974 0.02 and a sensitivity of 0.987 0.05, 0.963 0.05, and 0.973 0.04 at 95% confidence interval for COVID-19, normal, and pneumonia classes, respectively. To ensure the effectiveness of the proposed model, it was validated using an independent Chest X-ray cohort and an overall classification accuracy of 0.979 was achieved. Comparison of the proposed framework with state-of-the-art methods reveal that the proposed framework outperforms others in terms of accuracy and sensitivity. Since interpretability of results is crucial in the medical domain, the gradient-based localizations are captured using Gradient-weighted Class Activation Mapping (Grad-CAM). In su...
Iridium(IV) gives a deep red complex with 3‐nitroso‐4‐hydroxy‐5,6‐benzo‐coumarin when heated on a boiling water‐bath for about 10 minutes. The complex is soluble in 50% aqueous acetone medium and exhibits maximum absorption at 520nm. Beer's law is obeyed up to 10.5 ppm of iridium at 520 nm. Molar absorptivity is 1.28×104 litre mole‐1 cm‐t and the sensitivity of the colour reaction is 0.015 μg Ir(IV)/cm2. The composition of the complex is 1:3 as determined by Job's and logarithmic methods. Common anions and cations do not interfere in the determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.