SUMMARY
We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.
Diffuse midline gliomas (including diffuse intrinsic pontine glioma, DIPG) are highly morbid glial neoplasms of the thalamus or brainstem that typically arise in young children and are not surgically resectable. These tumors are characterized by a high rate of histone H3 mutation, resulting in replacement of lysine 27 with methionine (K27M) in genes encoding H3 variants H3.3 (H3F3A) and H3.1 (HIST1H3B). Detection of these gain-of-function mutations has clinical utility, as they are associated with distinct tumor biology and clinical outcomes. Given the paucity of tumor tissue available for molecular analysis and relative morbidity of midline tumor biopsy, CSF-derived tumor DNA from patients with diffuse midline glioma may serve as a viable alternative for clinical detection of histone H3 mutation. We demonstrate the feasibility of two strategies to detect H3 mutations in CSF-derived tumor DNA from children with brain tumors (n = 11) via either targeted Sanger sequencing of H3F3A and HIST1H3B, or H3F3A c.83 A > T detection via nested PCR with mutation-specific primers. Of the six CSF specimens from children with diffuse midline glioma in our cohort, tumor DNA sufficient in quantity and quality for analysis was isolated from five (83%), with H3.3K27M detected in four (66.7%). In addition, H3.3G34V was identified in tumor DNA from a patient with supratentorial glioblastoma. Test sensitivity (87.5%) and specificity (100%) was validated via immunohistochemical staining and Sanger sequencing in available matched tumor tissue specimens (n = 8). Our results indicate that histone H3 gene mutation is detectable in CSF-derived tumor DNA from children with brain tumors, including diffuse midline glioma, and suggest the feasibility of "liquid biopsy" in lieu of, or to complement, tissue diagnosis, which may prove valuable for stratification to targeted therapies and monitoring treatment response.
Purpose: To investigate molecular alterations in choroid plexus tumors (CPT) using a genome-wide high-throughput approach to identify diagnostic and prognostic signatures that will refine tumor stratification and guide therapeutic options.Experimental Design: One hundred CPTs were obtained from a multi-institutional tissue and clinical database. Copynumber (CN), DNA methylation, and gene expression signatures were assessed for 74, 36, and 40 samples, respectively. Molecular subgroups were correlated with clinical parameters and outcomes.Results: Unique molecular signatures distinguished choroid plexus carcinomas (CPC) from choroid plexus papillomas (CPP) and atypical choroid plexus papillomas (aCPP); however, no significantly distinct molecular alterations between CPPs and aCPPs were observed. Allele-specific CN analysis of CPCs revealed two novel subgroups according to DNA content: hypodiploid and hyperdiploid CPCs. Hyperdiploid CPCs exhibited recurrent acquired uniparental disomy events. Somatic mutations in TP53were observed in 60% of CPCs. Investigating the number of mutated copies of p53 per sample revealed a high-risk group of patients with CPC carrying two copies of mutant p53, who exhibited poor 5-year event-free (EFS) and overall survival (OS) compared with patients with CPC carrying one copy of mutant p53 (OS: 14.3%, 95% confidence interval, 0.71%-46.5% vs. 66.7%, 28.2%-87.8%, respectively, P ¼ 0.04; EFS: 0% vs. 44.4%, 13.6%-71.9%, respectively, P ¼ 0.03). CPPs and aCPPs exhibited favorable survival.Discussion: Our data demonstrate that differences in CN, gene expression, and DNA methylation signatures distinguish CPCs from CPPs and aCPPs; however, molecular similarities among the papillomas suggest that these two histologic subgroups are indeed a single molecular entity. A greater number of copies of mutated TP53 were significantly associated to increased tumor aggressiveness and a worse survival outcome in CPCs. Collectively, these findings will facilitate stratified approaches to the clinical management of CPTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.