Decadal predictions have gained immense importance over the last decade because of their use in near-term adaption planning. Computationally expensive coupled model intercomparison project phase 5 general circulation models (GCMs) are initialized every 5 years and they generate the decadal hindcasts with moderate skill. Here we test the hypothesis that computationally inexpensive data-driven models, such as multi-variate singular spectrum analysis (MSSA), which takes care of trends and oscillations, performs similar to GCMs. We pick up one of the most complex variables having low predictability, Indian summer monsoon rainfall (ISMR) and its possible causal sea surface temperatures (SST). We find that the MSSA approach performs similar to the GCMs in simulating SSTs beyond their nonlinear limits of predictability, which is ∼12 months. These SSTs are used for decadal predictions of ISMR and show improved skills compared to the GCMs. We conclude that data-driven models are possible alternatives to computationally expensive GCMs for decadal predictions.
Indian Summer Monsoon Rainfall (ISMR) is one of the most well-documented areas of hydrometeorology; however, the processes associated with ISMR are not well understood. This attributes to the complexities associated with ISMR at multiple spatio-temporal scales. This further results in inconsistencies across the literature to assess the impacts of global warming on the monsoon, though this has huge relevance as a huge population of South Asia is dependent on the same. Here, we review and assess the existing literature on the Indian monsoon, its variability, and its trajectory in a warming scenario. We further synthesize the literature on its impacts on the hydrology of major river basins in South Asia. We also identify a few research questions, addressing which will add value to the understanding of the Indian monsoon and the associated water cycle. We have highlighted that there is a significant lack of understanding of how different large-scale and regional factors affect ISMR at different timescales. These impacts, in turn, get translated into hydrology and water sector in India. There is a need to know where we stand to combat the impacts of climate change on ISMR, which can be translated to adaptation by policy-making processes and water management practices in India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.