This study reports the development of ritonavir-copovidone amorphous solid dispersions (ASDs) and dosage forms thereof using selective laser sintering (SLS) 3-dimensional (3-D) printing in a single step, circumventing the post-processing steps required in common techniques employed to make ASDs. For this study, different drug loads of ritonavir with copovidone were processed at varying processing conditions to understand the impact, range, and correlation of these parameters for successful ASD formation. Further, ASDs characterized using conventional and advanced solid-state techniques including wide-angle X-ray scattering (WAXS), solid-state nuclear magnetic resonance (ssNMR), revealed the full conversion of the crystalline drug to its amorphous form as a function of laser-assisted selective fusion in a layer-by-layer manner. It was observed that an optimum combination of the powder flow properties, surface temperature, chamber temperature, laser speed, and hatch spacing was crucial for successful ASD formation, any deviations resulted in print failures or only partial amorphous conversion. Moreover, a 21fold increase in solubility was demonstrated by the SLS 3-D printed tablets. The results confirmed that SLS 3-D printing can be used as a single-step platform for creating ASD-based pharmaceutical dosage forms with a solubility advantage.
This research demonstrates the use of fill density as an effective tool for controlling the drug release without changing the formulation composition. The merger of hot-melt extrusion (HME) with fused deposition modeling (FDM)-based 3-dimensional (3-D) printing processes over the last decade has directed pharmaceutical research towards the possibility of printing personalized medication. One key aspect of printing patient-specific dosage forms is controlling the release dynamics based on the patient’s needs. The purpose of this research was to understand the impact of fill density and interrelate it with the release of a poorly water-soluble, weakly acidic, active pharmaceutical ingredient (API) from a hydroxypropyl methylcellulose acetate succinate (HPMC-AS) matrix, both mathematically and experimentally. Amorphous solid dispersions (ASDs) of ibuprofen with three grades of AquaSolveTM HPMC-AS (HG, MG, and LG) were developed using an HME process and evaluated using solid-state characterization techniques. Differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), and polarized light microscopy (PLM) confirmed the amorphous state of the drug in both polymeric filaments and 3D printed tablets. The suitability of the manufactured filaments for FDM processes was investigated using texture analysis (TA) which showed robust mechanical properties of the developed filament compositions. Using FDM, tablets with different fill densities (20–80%) and identical dimensions were printed for each polymer. In vitro pH shift dissolution studies revealed that the fill density has a significant impact (F(11, 24) = 15,271.147, p < 0.0001) and a strong negative correlation (r > −0.99; p < 0.0001) with the release performance, where 20% infill demonstrated the fastest and most complete release, whereas 80% infill depicted a more controlled release. The results obtained from this research can be used to develop a robust formulation strategy to control the drug release from 3D printed dosage forms as a function of fill density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.