BackgroundCarnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry.MethodsThis review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts).ResultsSince the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants.DiscussionThese different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
faris 'imadi Mohd Salleh, Rishiesvari Ravee, Wan nor Adibah Wan Zakaria & normah Mohd noor carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. the transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.Carnivorous plants are commonly found in habitats deprived of nutrients, especially nitrogen and phosphorus. To qualify as carnivorous, a plant must have at least one adaptation for active attraction, capture, digestion, and clear nutritional benefit from carnivory 1 . The convergent evolution of passive pitfall traps resulted in carnivorous pitcher plants of diverse orders and families, including Nepenthaceae (Caryophyllales), Cephalotaceae (Oxalidales), and Sarraceniaceae (Ericales) at distant geographical locations but sharing similar digestive fluid proteins 2-4 . A species-rich monotypic group of tropical pitcher plants from genus Nepenthes develop attractive pitchers of diverse shapes and sizes 5 . Recently, two highly conserved leaf developmental regulatory genes, ASYMMETRIC LEAVES1 (AS1) and REVOLUTA (REV), have been shown to be key in pitcher developme...
Background. Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. Methods. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). Results. Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. Discussion. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Nepenthes ampullaria is a unique carnivorous tropical pitcher plant with the detritivorous capability of sequestering nutrients from leaf litter apart from being insectivorous. The changes in the protein composition and protease activity of its pitcher fluids during the early opening of pitchers (D0 and D3C) were investigated via a proteomics approach and a controlled protein depletion experiment (D3L). A total of 193 proteins were identified. Common proteins such as pathogenesis‐related protein, proteases (Nep [EC:3.4.23.12], SCP [EC:3.4.16.‐]), peroxidase [EC:1.11.1.7], GDSL esterase/lipase [EC:3.1.1.‐], and purple acid phosphatase [EC:3.1.3.2] were found in high abundance in the D0 pitchers and were replenished in D3L samples. This reflects their importance for biological processes upon pitcher opening. Meanwhile, prey‐inducible chitinases [EC:3.2.1.14] were found in D0 but not in D3C and D3L samples, which suggests their degradation in the absence of prey. Protease activity assays demonstrated the replenishment of proteases in D3L with similar levels of proteolytic activities to that of D3C samples. This supports a feedback mechanism and signaling in the molecular regulation of endogenous protein secretion, turnover, and activity in Nepenthes pitcher fluids. Furthermore, we also discovered several new enzymes (XTH [EC:2.4.1.207], PAE [EC:3.1.1.98]) with possible functions in cell wall degradation that could contribute to the detritivory habit of N. ampullaria.
Background. Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. Methods. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). Results. Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. Discussion. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.