While the impact of air pollution on human health is well studied, mechanistic impacts of air pollution on wild systems, including those providing essential ecosystem services, are largely unknown, but directly impact our health and well-being. India is the world’s largest fruit producer, second most populous country, and contains 9 of the world’s 10 most polluted cities. Here, we sampled Giant Asian honey bees, Apis dorsata, at locations with varying air pollution levels in Bangalore, India. We observed significant correlations between increased respirable suspended particulate matter (RSPM) deposition and changes in bee survival, flower visitation, heart rate, hemocyte levels, and expression of genes related to lipid metabolism, stress, and immunity. Lab-reared Drosophila melanogaster exposed to these same sites also exhibited similar molecular and physiological differences. Our study offers a quantitative analysis on the current impacts of air pollution on insects, and indicates the urgency for more nonhuman studies to accurately assess the effects of pollution on our natural world.
India imposed one of the world's strictest population-wide lockdowns on March 25, 2020 for COVID-19. We estimated epidemiological parameters, evaluated the effect of control measures on the epidemic in India, and explored strategies to exit lockdown.We obtained patient-level data to estimate the delay from onset to confirmation and the asymptomatic proportion. We estimated the basic and time-varying reproduction number (R 0 and R t ) after adjusting for imported cases and delay to confirmation using incidence data from March 4 to April 25, 2020. Using a SEIR-QDPA model, we simulated lockdown relaxation scenarios and increased testing to evaluate lockdown exit strategies. R 0 for India was estimated to be 2Á08, and the R t decreased from 1Á67 on March 30 to 1Á16 on April 22. We observed that the delay from the date of lockdown relaxation to the start of the second wave increases as lockdown is extended farther after the first wave peak-this delay is longer if lockdown is relaxed gradually.Aggressive measures such as lockdowns may be inherently enough to suppress an outbreak; however, other measures need to be scaled up as lockdowns are relaxed. Lower levels of social distancing when coupled with a testing ramp-up could achieve similar outbreak control as an aggressive social distancing regime where testing was not increased.
Background India has experienced the second largest outbreak of COVID-19 globally, yet there is a paucity of studies analysing contact tracing data in the region which can optimise public health interventions (PHI’s). Methods We analysed contact tracing data from Karnataka, India between 9 March and 21 July 2020. We estimated metrics of transmission including the reproduction number (R), overdispersion (k), secondary attack rate (SAR), and serial interval. R and k were jointly estimated using a Bayesian Markov Chain Monte Carlo approach. We studied determinants of risk of further transmission and risk of being symptomatic using Poisson regression models. Findings Up to 21 July 2020, we found 111 index cases that crossed the super-spreading threshold of ≥8 secondary cases. Among 956 confirmed traced cases, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases. Among 16715 contacts, overall SAR was 3.6% [95% CI, 3.4–3.9] and symptomatic cases were more infectious than asymptomatic cases (SAR 7.7% vs 2.0%; aRR 3.63 [3.04–4.34]). As compared to infectors aged 19–44 years, children were less infectious (aRR 0.21 [0.07–0.66] for 0–5 years and 0.47 [0.32–0.68] for 6–18 years). Infectors who were confirmed ≥4 days after symptom onset were associated with higher infectiousness (aRR 3.01 [2.11–4.31]). As compared to asymptomatic cases, symptomatic cases were 8.16 [3.29–20.24] times more likely to cause symptomatic infection in their secondary cases. Serial interval had a mean of 5.4 [4.4–6.4] days, and case fatality rate was 2.5% [2.4–2.7] which increased with age. Conclusion We found significant heterogeneity in the individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in the underlying number of contacts. To strengthen contact tracing in over-dispersed outbreaks, testing and tracing delays should be minimised and retrospective contact tracing should be implemented. Targeted measures to reduce potential superspreading events should be implemented. Interventions aimed at children might have a relatively small impact on reducing transmission owing to their low symptomaticity and infectivity. We propose that symptomatic cases could cause a snowballing effect on clinical severity and infectiousness across transmission generations; further studies are needed to confirm this finding.
Background: The coronavirus disease 2019 (COVID-19) has caused over 3 200 000 cases and 230 000 deaths as on 2 May 2020, and has quickly become an unprecedented global health threat. India, with its unique challenges in fighting this pandemic, imposed one of the worlds strictest and largest population-wide lockdown on 25 March 2020. Here, we estimated key epidemiological parameters and evaluated the effect of control measures on the COVID-19 epidemic in India. Through a modelling approach, we explored various strategies to exit the lockdown. Methods: We obtained data from 140 confirmed COVID-19 patients at a tertiary care hospital in India to estimate the delay from symptom onset to confirmation and the proportion of cases without symptoms. We estimated the basic reproduction number (R0) and time-varying effective reproduction number (Rt) after adjusting for imported cases and reporting lag, using incidence data from 4 March to 25 April 2020 for India. We built upon the SEIR model to account for underreporting, reporting delays, and varying asymptomatic proportion and infectivity. Using this model, we simulated lockdown relaxation under various scenarios to evaluate its effect on the second wave, and also modelled increased detection through testing. We hypothesised that increased testing after lockdown relaxation will decrease the epidemic growth enough to allow for a greater resumption of normal social mixing thus minimising the social and economic fallout. Findings: The median delay from symptom onset to confirmation (reporting lag) was estimated to be 2·68 days (95% CI 2·00−3·00) with an IQR of 2·03 days (95% CI 1·00−3·00). 60·7% of confirmed COVID-19 cases (n=140) were found to be asymptomatic. The R0 for India was estimated to be 2·083 (95% CI 2·044−2·122 ; R2 = 0·972), while the Rt gradually down trended from 1·665 (95%CI 1·539−1·789) on 30 March to 1·159 (95% CI 1·128−1·189) on 22 April. In the modelling, we observed that the time lag from date of lockdown relaxation to start of second wave increases as lockdown is extended farther after the first wave peak. This benefit was greater for a gradual relaxation as compared to a sudden lifting of lockdown. We found that increased detection through testing decreases the number of total infections and symptomatic cases, and the benefit of detecting each extra case was higher when prevailing transmission rates were higher (as when restrictions are relaxed). Lower levels of social restrictions when coupled with increased testing, could achieve similar outcomes as an aggressive social distancing regime where testing was not increased. Interpretation: The aggressive control measures in India since 25 March have produced measurable reductions in transmission, although suppression needs to be maintained to achieve sub-threshold Rt. Additional benefits for mitigating the second wave can be achieved if lockdown can be feasibly extended farther after the peak of active cases has passed. Aggressive measures like lockdowns may inherently be enough to suppress the epidemic, however other measures need to be scaled up as lockdowns are relaxed. Expanded testing is expected to play a pivotal role in the lockdown exit strategy and will determine the degree of return to normalcy that will be possible. Increased testing coverage will also ensure rapid feedback from surveillance systems regarding any resurgence in cases, so that geo-temporally targeted measures can be instituted at the earliest. Considering that asymptomatics play an undeniable role in transmission of COVID-19, it may be prudent to reduce the dependence on presence of symptoms for implementing control strategies, behavioral changes and testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.