Material representations that are compatible with machine learning models play a key role in developing models that exhibit high accuracy for property prediction. Atomic orbital interactions are one of the important factors that govern the properties of crystalline materials, from which the local chemical environments of atoms is inferred. Therefore, to develop robust machine learningmodels for material properties prediction, it is imperative to include features representing such chemical attributes. Here, we propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework that includes atomic orbital interaction features that learns material properties in a robust way. In addition, we embedded an encoder-decoder network into the OGCNN enabling it to learn important features among basic atomic (elemental features), orbitalorbital interactions, and topological features. We examined the performance of this model on a broad range of crystalline material data to predict different properties. We benchmarked the performance of the OGCNN model with that of: 1) the crystal graph convolutional neural network (CGCNN), 2) other state-of-the-art descriptors for material representations including Many-body Tensor Representation (MBTR) and the Smooth Overlap of Atomic Positions (SOAP), and 3) other conventional regression machine learning algorithms where different crystal featurization methods have been used. We find that OGCNN significantly outperforms them. The OGCNN model with high predictive accuracy can be used to discover new materials among the immense phase and compound spaces of materials.
Metal−organic frameworks (MOFs) are materials with a high degree of porosity that can be used for many applications. However, the chemical space of MOFs is enormous due to the large variety of possible combinations of building blocks and topology. Discovering the optimal MOFs for specific applications requires an efficient and accurate search over countless potential candidates. Previous high-throughput screening methods using computational simulations like DFT can be time-consuming. Such methods also require the 3D atomic structures of MOFs, which adds one extra step when evaluating hypothetical MOFs. In this work, we propose a structure-agnostic deep learning method based on the Transformer model, named as MOFormer, for property predictions of MOFs. MOFormer takes a text string representation of MOF (MOFid) as input, thus circumventing the need of obtaining the 3D structure of a hypothetical MOF and accelerating the screening process. By comparing to other descriptors such as Stoichiometric-120 and revised autocorrelations, we demonstrate that MOFormer can achieve state-of-the-art structureagnostic prediction accuracy on all benchmarks. Furthermore, we introduce a self-supervised learning framework that pretrains the MOFormer via maximizing the cross-correlation between its structure-agnostic representations and structure-based representations of the crystal graph convolutional neural network (CGCNN) on >400k publicly available MOF data. Benchmarks show that pretraining improves the prediction accuracy of both models on various downstream prediction tasks. Furthermore, we revealed that MOFormer can be more data-efficient on quantum-chemical property prediction than structure-based CGCNN when training data is limited. Overall, MOFormer provides a novel perspective on efficient MOF property prediction using deep learning.
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. The recent outbreak of COVID-19 infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of SARS-CoV-2 will save the life of thousands. To predict neutralizing antibodies for SARS-CoV-2 in a high-throughput manner, in this paper, we use different machine learning (ML) model to predict the possible inhibitory synthetic antibodies for SARS-CoV-2. We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, like XGBoost, Random Forest, Multilayered Perceptron, Support Vector Machine and Logistic Regression, we screened thousands of hypothetical antibody sequences and found nine stable antibodies that potentially inhibit SARS-CoV-2. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit SARS-CoV-2.
The fast and untraceable virus mutations take lives of thousands of people before the immune system can produce the inhibitory antibody. Recent outbreak of novel coronavirus infected and killed thousands of people in the world. Rapid methods in finding peptides or antibody sequences that can inhibit the viral epitopes of COVID-19 will save the life of thousands. In this paper, we devised a machine learning (ML) model to predict the possible inhibitory synthetic antibodies for Corona virus.We collected 1933 virus-antibody sequences and their clinical patient neutralization response and trained an ML model to predict the antibody response. Using graph featurization with variety of ML methods, we screened thousands of hypothetical antibody sequences and found 8 stable antibodies that potentially inhibit COVID-19. We combined bioinformatics, structural biology, and Molecular Dynamics (MD) simulations to verify the stability of the candidate antibodies that can inhibit the Corona virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.