Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.
Scleroderma is a multisystem fibroproliferative disease with no effective medical treatment. Myofibroblasts are critical to the fibrogenic tissue repair process in the skin and many internal organs. Emerging data support a role for both matrix stiffness, and transforming growth factor β1 (TGFβ1), in myofibroblast differentiation. Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel activated by both mechanical and biochemical stimuli. The objective of this study was to determine the role of TRPV4 in TGFβ1- and matrix stiffness-induced differentiation of dermal fibroblasts. We found that TRPV4 channels are expressed and functional in both human (HDF) and mouse (MDF) dermal fibroblasts. TRPV4 activity (agonist-induced Ca influx) was induced by both matrix stiffness and TGFβ1 in dermal fibroblasts. TGFβ1 induced expression of TRPV4 proteins in a dose-dependent manner. Genetic ablation or pharmacological antagonism of TRPV4 channel abrogated Ca influx and both TGFβ1-induced and matrix stiffness-induced myofibroblast differentiation as assessed by ) α-smooth muscle actin expression/incorporation into stress fibers,) generation of polymerized actin, and ) expression of collagen-1. We found that TRPV4 inhibition abrogated TGFβ1-induced activation of AKT but not of Smad2/3, suggesting that the mechanism by which profibrotic TGFβ1 signaling in dermal fibroblasts is modified by TRPV4 may be through non-Smad pathways. Altogether, these data identify a novel reciprocal functional link between TRPV4 activation and TGFβ1 signals regulating dermal myofibroblast differentiation. These findings suggest that therapeutic inhibition of TRPV4 activity may provide a targeted approach to the treatment of scleroderma.
Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.