In this paper we present a concrete design for a probabilistic (p-) computer based on a network of p-bits, robust classical entities fluctuating between -1 and +1, with probabilities that are controlled through an input constructed from the outputs of other p-bits. The architecture of this probabilistic computer is similar to a stochastic neural network with the p-bit playing the role of a binary stochastic neuron, but with one key difference: there is no sequencer used to enforce an ordering of p-bit updates, as is typically required. Instead, we explore sequencerless designs where all p-bits are allowed to flip autonomously and demonstrate that such designs can allow ultrafast operation unconstrained by available clock speeds without compromising the solution's fidelity. Based on experimental results from a hardware benchmark of the autonomous design and benchmarked device models, we project that a nanomagnetic implementation can scale to achieve petaflips per second with millions of neurons. A key contribution of this paper is the focus on a hardware metric − flips per second− as a problem and substrate-independent figure-of-merit for an emerging class of hardware annealers known as Ising Machines. Much like the shrinking feature sizes of transistors that have continually driven Moore's Law, we believe that flips per second can be continually improved in later technology generations of a wide class of probabilistic, domain specific hardware.
Computation in the past decades has been driven by deterministic computers based on classical deterministic bits. Recently, alternative computing paradigms and domain-based computing like quantum computing and probabilistic computing have gained traction. While quantum computers based on q-bits utilize quantum effects to advance computation, probabilistic computers based on probabilistic (p-)bits are naturally suited to solve problems that require large amount of random numbers utilized in Monte Carlo and Markov Chain Monte Carlo algorithms. These Monte Carlo techniques are used to solve important problems in the fields of optimization, numerical integration or sampling from probability distributions. However, to efficiently implement Monte Carlo algorithms the generation of random numbers is crucial. In this paper, we present and benchmark a probabilistic coprocessor based on p-bits that are naturally suited to solve these problems. We present multiple examples and project that a nanomagnetic implementation of our probabilistic coprocessor can outperform classical CPU and GPU implementations by multiple orders of magnitude.
Protein structure prediction is a critical problem linked to drug design, mutation detection, and protein synthesis, among other applications. To this end, evolutionary data has been used to build contact maps which are traditionally minimized as energy functions via gradient descent based schemes like the L-BFGS algorithm. In this paper we present what we call the Alternating Metropolis-Hastings (AMH) algorithm, which (a) significantly improves the performance of traditional MCMC methods, (b) is inherently parallelizable allowing significant hardware acceleration using GPU, and (c) can be integrated with the L-BFGS algorithm to improve its performance. The algorithm shows an improvement in the energy of 8.17% to 61.04% (average 38.9%) over traditional MH and 0.53% to 17.75% (average 8.9%) over traditional MH with intermittent noisy restarts, tested across 9 proteins from recent CASP competitions. We go on to map the Alternating MH algorithm to a GPGPU which improves sampling rate by 277x and improves simulation time to a low energy protein prediction by 7.5x to 26.5x over CPU. We show that our approach can be incorporated into state-of-the-art protein prediction pipelines by applying it to trRosetta2's energy function and also the distogram component of Alphafold1's energy function. Finally, we note that specially designed probabilistic computers (or p-computers) can provide even better performance than GPU's for MCMC algorithms like the one discussed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.