School is a teaching and learning institution. The problem observed in schools, in general, is that there is still no centrally managed web-based system, one of which is the loss of facility and infrastructure inventory data that is still maintained using Microsoft Excel, or the absence of a unique system to summarize it. Inventory data of facilities and infrastructure in the database or online. If information is needed, the school should look up each one in the office files. As a result of these problems, an application is needed in the form of a site information system and web-based infrastructure, every year the amount of data owned by schools increases and it is difficult to manage it. The manual summary is used to assist service schools in processing data such as information on the inventory of facilities and infrastructure. This research aims to develop an information system capable of managing real estate and infrastructure information in a web-based database system so that the system can connect to the Internet quickly and accurately. The author uses XAMPP as a local hosting server, which includes Apache as an HTTP server, MySQL as a database, Sublime Text 3 as a sentence editor for HTML and PHP scripts, and PHP as a programming language, and uses a browser to view output from web pages, and creates a database with SQL Yog.
The k-means is a clustering algorithm that is often and easy to use. This algorithm is susceptible to randomly chosen centroid points so that it cannot produce optimal results. This research aimed to improve the k-means algorithm’s performance by applying a proposed algorithm called point center. The proposed algorithm overcame the random centroid value in k-means and then applied it to predict software defects modules’ errors. The point center algorithm was proposed to determine the initial centroid value for the k-means algorithm optimization. Then, the selection of X and Y variables determined the cluster center members. The ten datasets were used to perform the testing, of which nine datasets were used for predicting software defects. The proposed center point algorithm showed the lowest errors. It also improved the k-means algorithm’s performance by an average of 12.82% cluster errors in the software compared to the centroid value obtained randomly on the simple k-means algorithm. The findings are beneficial and contribute to developing a clustering model to handle data, such as to predict software defect modules more accurately.
Pendidikan adalah suatu hal yang sangat penting dalam perkembangan suatu negara. Salah satu cara untuk meningkatkan kualitas yang lebih tinggi dari skema pendidikan tinggi adalah dengan memprediksi penilaian akademik mahasiswa dan dengan demikian lembaga dapat mengambil tindakan awal untuk meningkatkan kinerja siswa. Klasifikasi mahasiswa berdasarkan potensi kinerja akademis mereka dapat menjadi strategi yang berguna untuk mengurangi kegagalan, untuk mempromosikan pencapaian hasil yang lebih baik dan untuk mengelola sumber daya yang lebih baik di lembaga pendidikan tinggi. Penelitian ini akan mengukur nilai akademis mahasiswa dengan menggunakan algoritma Naïve Bayes dimana memanfaatkan perhitungan probabilitas dan statistik data sebelumnya untuk memprediksi data di masa depan berdasarkan pada data sebelumnya. Hasil penelitian menunjukkan accuracy 96,24%, precison 95,76%, dan recall 100%. Selain itu dengan algoritma Naïve Bayes menunjukkan hasil prediksi berdasarkan mahasiswa yang kuliah sambil bekerja, jadwal kerja mahasiswa, dan berdasarkan waktu kuliah.
Pendidikan adalah suatu hal yang sangat penting dalam perkembangan suatu negara. Salah satu cara untuk meningkatkan kualitas yang lebih tinggi dari skema pendidikan tinggi adalah dengan memprediksi penilaian akademik mahasiswa dan dengan demikian lembaga dapat mengambil tindakan awal untuk meningkatkan kinerja siswa. Klasifikasi mahasiswa berdasarkan potensi kinerja akademis mereka dapat menjadi strategi yang berguna untuk mengurangi kegagalan, untuk mempromosikan pencapaian hasil yang lebih baik dan untuk mengelola sumber daya yang lebih baik di lembaga pendidikan tinggi. Penelitian ini akan mengukur nilai akademis mahasiswa dengan menggunakan algoritma Naïve Bayes dimana memanfaatkan perhitungan probabilitas dan statistik data sebelumnya untuk memprediksi data di masa depan berdasarkan pada data sebelumnya. Hasil penelitian menunjukkan accuracy 96,24%, precison 95,76%, dan recall 100%. Selain itu dengan algoritma Naïve Bayes menunjukkan hasil prediksi berdasarkan mahasiswa yang kuliah sambil bekerja, jadwal kerja mahasiswa, dan berdasarkan waktu kuliah.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.