Monkeys with unilateral lesions of the primary visual cortex (V1) can make saccades to visual stimuli in their contralateral ("affected") hemifield, but their sensitivity to luminance contrast is reduced. We examined whether the effects of V1 lesions were restricted to vision or included later stages of visual-oculomotor processing. Monkeys with unilateral V1 lesions were tested with a visually guided saccade task with stimuli in various spatial positions and of various luminance contrasts. Saccades to the stimuli in the affected hemifield were compared with those to the near-threshold stimuli in the normal hemifield so that the performances of localization were similar. Scatter in the end points of saccades to the affected hemifield was much larger than that of saccades to the near-threshold stimuli in the normal hemifield. Additional analysis revealed that this was because the initial directional error was not as sufficiently compensated as it was in the normal hemifield. The distribution of saccadic reaction times in the affected hemifield tended to be narrow. We modeled the distribution of saccadic reaction times by a modified diffusion model and obtained evidence that the decision threshold for initiation of saccades to the affected hemifield was lower than that for saccades to the normal hemifield. These results suggest that the geniculostriate pathway is crucial for on-line compensatory mechanisms of saccadic control and for decision processes. We propose that these results reflect deficits in deliberate control of visual-oculomotor processing after V1 lesions, which may parallel loss of visual awareness in human blindsight patients.
In patients with damage to the primary visual cortex (V1), residual vision can guide goal-directed movements to targets in the blind field without awareness. This phenomenon has been termed blindsight, and its neural mechanisms are controversial. There should be visual pathways to the higher visual cortices bypassing V1, however some literature propose that the signal is mediated by the superior colliculus (SC) and pulvinar, while others claim the dorsal lateral geniculate nucleus (dLGN) transmits the signal. Here, we directly test the role of SC to ventrolateral pulvinar (vlPul) pathway in blindsight monkeys. Pharmacological inactivation of vlPul impairs visually guided saccades (VGS) in the blind field. Selective and reversible blockade of the SC-vlPul pathway by combining two viral vectors also impairs VGS. With these results we claim the SC-vlPul pathway contributes to blindsight. The discrepancy would be due to the extent of retrograde degeneration of dLGN and task used for assessment.
Previous reports on 'blindsight' have shown that some patients with lesions of the primary visual cortex (V1) could localize visual targets in their scotoma with hand and/or eye movements without visual awareness. A role of the retino-tectal pathway on residual vision has been proposed but the direct evidence for this still remains sparse. To examine this possibility, we inactivated the superior colliculus (SC) of unilateral V1-lesioned monkeys using microinjections of muscimol, and analysed the effects on visually guided saccades. Following muscimol injections into the contralesional SC, the monkeys performed the visually guided saccade task with relatively minor deficits. The effects of ipsilesional SC inactivation were more severe. After injections, the monkeys failed to localize the target within the visual field represented at the injection site on the SC map. The effects of ipsilesional SC inactivation may result from sensory deficits, motor deficits or a combination of both. To examine these possibilities, we tested the effects of SC inactivation on the motor system by investigating spontaneous saccades. After inactivation of the ipsilesional SC, spontaneous saccades toward the injection site were not abolished, suggesting that impairment of visually guided saccades following inactivation of the ipsilesional SC could not be explained solely by a motor deficit and was primarily due to a visual deficit, presumably by interfering with processing in the superficial layer. We conclude that the retino-tectal pathway plays an essential role in residual vision after V1 lesion. The results suggest that this pathway may be involved in mediating unconscious vision in blindsight patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.