Abstrak Desa Lepak merupakan desa yang berada di pulau Lombok Nusa Tenggara Barat dengan angka penduduk miskin cukup tinggi. Penelitian ini bertujuan untuk mengklasifikasi masyarakat di desa Lepak Kecamatan Sakra Timur Kabupaten Lombok Timur. Teknik pengumpulan data dilakukan dengan teknik studi dokumen. Teknik analisis data pada penelitian ini menggunakan metode Naïve Bayes Classifier, yang merupakan salah satu teknik pengklasifikasian dalam data mining. Berdasarkan hasil pengujian confusion matrix diperoleh klasifikasi masyarakat miskin di desa Lepak yang memang miskin adalah 148 record dari 156 record yang artinya terdapat 8 record yang error dimana ia lebih mirip dengan yang tidak miskin. Sedangkan untuk masyarakat tidak miskin terdapat 110 record dari 111 record yang memang tidak miskin dan sisanya 1 record error yang lebih mirip dengan miskin. Keakuratan data testing dalam memprediksi hasil klasifikasi yang menunjukkan masyarakat miskin dan tidak miskin dapat dilihat dari nilai acurasy yaitu sebesar 96.63% yang artinya termasuk dalam kategori good. Berdasarkan penelitian ini menunjukkan bahwa klasifikasi kelas untuk masyarakat desa Lepak adalah kelas dengan masyarakat miskin.
Indonesia is an equatorial country that has abundant natural wealth from the seabed to the top of the mountains, the beauty of the country of Indonesia also lies in the mountains that it has in various provinces, for example in the province of West Nusa Tenggara known for its beautiful mountain, namely Rinjani. The increase in outdoor activities has attracted many people to open outdoor shops in the West Nusa Tenggara region. Sales transaction data in outdoor stores can be processed into information that can be profitable for the store itself. Using a market basket analysis method to see the association (rules) between a number of sales attributes. The purpose of this study is to determine the pattern of relationships in the transactions that occur. The data used is the transaction data of outdoor goods. The analysis used is the Association Rules with the Apriori algorithm and the frequent pattern growth (FP-growth) algorithm. The results of this study are formed 10 rules in the Apriori algorithm and 4 rules in the FP-Growth algorithm. The relationship pattern or association rule that is formed is in the item "if a consumer buys a portable stove, it is possible that portable gas will also be purchased" at the strength level of the rules with a minimum support of 0.296 and confidence 0.774 at Apriori and 0.296 and 0.750 at FP-Growth.
Abstrak: Penelitian ini bertujuan untuk meningkatkan aktivitas dan hasil belajar siswa SMPN 1 Lingsar kelas VII-1 pada materi segi empat melalui penerapan model pembelajaran Kooperatif tipe Snowball Thowing. Penelitian ini merupakan penelitian tindakan kelas yang dilaksnakaan dalam 2 siklus. Hasil penelitian menunjukkan bahwa penerapan model pembelajaran tersebut dapat memperbaiki aktivitas dan hasil belajar siswa. Hal ini ditunjukkan oleh skor aktivitas siswa tergolong tinggi pada siklus I dan sangat tinggi pada siklus II. Sedangkan skor rata-rata hasil evaluasi belajar siswa mengalami peningkatan pada tiap siklus yaitu pada siklus I rata-rata skor hasil evaluasi belajar 58,2 dengan ketuntasan klasikal 50% dan pada siklus II skor rata-rata hasil evaluasi belajarnya mencapai 85,74 dengan ketuntasan klasikal 89%. Capaian tersebut menunjukkan bahwa penerapan Model Pembelajaran Kooperatif tipe Snowball Throwing pada pembelajaran segiempat dapat meningkatkan aktivitas dan prestasi belajar siswa SMP Negeri 1 Lingsar kelas VII-1 tahun pelajaran 2012/2013. Kata kunci:Kooperatif tipe snow ball throwing, aktivitas belajar, hasil belajar. Abstract:This research aims to improve the activity and student learning outcomes SMPN 1 Lingsar class VII-1 on the rectangular material through the implementation of cooperative learning model type thowing Snowball. This research is a classroom action research conducted in two cycles. The results showed that the application of the learning model can improve the activity and student learning outcomes. This is demonstrated by the student activity score relatively high on the first cycle and very high in the second cycle. While the average score on the evaluation of student learning has increased in each cycle, namely in the first cycle an average score of 58.2 on the evaluation study with classical completeness 50% and the second cycle the average score on the evaluation study reached 85.74 with classical completeness 89%. These achievements show that the application of cooperative learning model type Snowball Throwing on the rectangular material can increase the activity of learning and student achievement SMP Negeri 1 Lingsar class VII-1 of the school year 2012/2013.
The purpose of this research is to develop worksheet based Ethnomatematics with Scientific approaches to improve outcome learning mathematics in secondary school that valid, practical and efective. Development of learning models in this study using ADDIE development model, because it has a simple stage, but clear and understandable. The model consists of five main stages, namely (Analysis, Design, Development, Implementation, and Evaluation). Tests performed on the class VII B Mts Riadlul Jannah NW Penjor. Based on the analysis of the trial showed that the worksheet based Ethnomatematics with Scientific approaches to improve learning outcomes mathematics in secondary school meet the criteria for a valid, practical and effective. Criteria of validity can be seen from the analysis results that meet the criteria of validity worksheet very valid acquisition of the actual total score of 313 out of a maximum score of 375. Criteria of practicality can be seen based of results teacher’s assessment analysis and the results of analyzing the response of students who meet the criteria are very practical based on the assessment of teachers with the acquisition of the actual total score of 123 out of a maximum score of 135 and has achieved practical criteria is based on the students’ responses with the percentage of 88.33% of standards. Criteria for effectiveness and results from analysis ≥ 75% student achievement test which student learning outcomes have achieved an average score of 67.5 or value is above the minimum of thoroughness criteria (KKM) 65 and the percentage of classical completeness reached 83.33% of the standard 75%.
The aim of study is to forecast global tourist visits and compare the forecasting methods to determine the best method using random forest, single exponential smoothing and double exponential smoothing, respectively. These methods are applied in global tourist visit data in West Nusa Tenggara Province. Random forest, single exponential smoothing and double exponential smoothing are familiar methods and are frequently utilized in forecasting. In addition, the three methods have great accuracy for time series data, such as data of global tourist visits. The data used in this study is data of global tourist visits from 2014 to 2021 in West Nusa Tenggara province. Applying the random forest, single exponential smoothing and double exponential smoothing methods in forecasting, the result shows that double exponential smoothing method is the best, based on the smallest value of Mean Absolute Percentage Error (MAPE) of 325.759. The forecasting result found out that tourist visits will increase from previous time, starting from August, 2021 to July, 2021 with an estimated 847 to 1045 lives
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.