The long-term effect of elevated atmospheric CO 2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene-emitting Quercus ilex L. and the isoprene-emitting Quercus pubescens Willd.) native to a high-CO 2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at . Long-term exposure to high atmospheric levels of CO 2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO 2 level by rapidly switching the CO 2 concentration in the gas-exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO 2 on isoprenoid emission. The absence of a CO 2 effect on actual emissions might indicate higher leaf temperature at elevated CO 2 , or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO 2 effect in Mediterranean ecosystems. Under elevated CO 2 , isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO 2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO 2 . This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO 2 levels.
Abstract:In light of climate change and its impacts on plant physiology, optimizing water usage and improving irrigation practices play a crucial role in crop management. In recent years, new optical remote sensing techniques have become widespread since they allow a non-invasive evaluation of plant water stress dynamics in a timely manner. Unmanned aerial vehicles (UAV) currently represent one of the most advanced platforms for remote sensing applications. In this study, remote and proximal sensing measurements were compared with plant physiological variables, with the aim of testing innovative services and support systems to farmers for optimizing irrigation practices and scheduling. The experiment, conducted in two vineyards located in Sardinia, Italy, consisted of two regulated deficit irrigation (RDI) treatments and two reference treatments maintained under stress and well-watered conditions. Indicators of crop water status (Crop Water Stress Index-CWSI-and linear thermal index) were calculated from UAV images and ground infrared thermal images and then related to physiological measurements. The CWSI values for moderate water deficit (RDI-1) were 0.72, 0.28 and 0.43 for 'Vermentino', 'Cabernet' and 'Cagnulari' respectively, while for severe (RDI-2) water deficit the values were 0.90, 0.34 and 0.51. The highest differences for net photosynthetic rate (Pn) and stomatal conductance (Gs) between RDI-1 and RDI-2 were observed in 'Vermentino'. The highest significant correlations were found between CWSI with Pn (R = −0.80), with Φ PSII (R = −0.49) and with Fv'/Fm' (R = −0.48) on 'Cagnulari', while a unique significant correlation between CWSI and non-photochemical quenching (NPQ) (R = 0.47) was found on 'Vermentino'. Pn, as well as the efficiency of light use by the photosystem II (PSII), declined under stress conditions and when CWSI values increased. Under the experimental water stress conditions, grapevines were able to recover their efficiency during the night, activating a photosynthetic protection mechanism such as thermal energy dissipation (NPQ) to prevent irreversible damage to the photosystem. The results presented here demonstrate that CWSI values derived from remote and proximal sensors could be valuable indicators for the assessment of the spatial variability of crop water status in Mediterranean vineyards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.