Various in vivo experimental works carried out on different animals and organs have shown that it is possible to reduce the damage caused to healthy tissue still preserving the therapeutic efficacy on the tumor tissue, by drastically reducing the total time of dose delivery (<200 ms). This effect, called the FLASH effect, immediately attracted considerable attention within the radiotherapy community, due to the possibility of widening the therapeutic window and treating effectively tumors which appear radioresistant to conventional techniques. Despite the experimental evidence, the radiobiological mechanisms underlying the FLASH effect and the beam parameters contributing to its optimization are not yet known in details. In order to fully understand the FLASH effect, it might be worthy to investigate some alternatives which can further improve the tools adopted so far, in terms of both linac technology and dosimetric systems. This work investigates the problems and solutions concerning the realization of an electron accelerator dedicated to FLASH therapy and optimized for in vivo experiments. Moreover, the work discusses the saturation problems of the most common radiotherapy dosimeters when used in the very high dose-per-pulse FLASH conditions and provides some preliminary experimental data on their behavior.
PRIMAGE is a European Commission-financed project dealing with medical imaging and artificial intelligence aiming to create an imaging biobank in oncology. The project includes a task dedicated to the interoperability between imaging and standard biobanks. We aim at linking Digital imaging and Communications in Medicine (DICOM) metadata to the Minimum Information About BIobank data Sharing (MIABIS) standard of biobanking. A very first integration model based on the fusion of the two existing standards, MIABIS and DICOM, has been developed. The fundamental method was that of expanding the MIABIS core to the imaging field, adding DICOM metadata derived from CT scans of 18 paediatric patients with neuroblastoma. The model was developed with the relational database management system Structured Query Language. The integration data model has been built as an Entity Relationship Diagram, commonly used to organise data within databases. Five additional entities have been linked to the “Image Collection” subcategory in order to include the imaging metadata more specific to the particular type of data: Body Part Examined, Modality Information, Dataset Type, Image Analysis, and Registration Parameters. The model is a starting point for the expansion of MIABIS with further DICOM metadata, enabling the inclusion of imaging data in biorepositories.
Background and objectiveThe systematic collection of medical images combined with imaging biomarkers and patient non-imaging data is the core concept of imaging biobanks, a key element for fuelling the development of modern precision medicine. Our purpose is to review the existing image repositories fulfilling the criteria for imaging biobanks. Methods Pubmed, Scopus and Web of Science were searched for articles published in English from January 2010 to July 2021 using a combination of the terms: "imaging" AND "biobanks" and "imaging" AND "repository". Moreover, the Community Research and Development Information Service (CORDIS) database (https:// cordis. europa. eu/ proje cts) was searched using the terms: "imaging" AND "biobanks", also including collections, projects, project deliverables, project publications and programmes. Results Of 9272 articles retrieved, only 54 related to biobanks containing imaging data were finally selected, of which 33 were disease-oriented (61.1%) and 21 population-based (38.9%). Most imaging biobanks were European (26/54, 48.1%), followed by American biobanks (20/54, 37.0%). Among disease-oriented biobanks, the majority were focused on neurodegenerative (9/33, 27.3%) and oncological diseases (9/33, 27.3%). The number of patients enrolled ranged from 240 to 3,370,929, and the imaging modality most frequently involved was MRI (40/54, 74.1%), followed by CT (20/54, 37.0%), PET (13/54, 24.1%), and ultrasound (12/54, 22.2%). Most biobanks (38/54, 70.4%) were accessible under request. Conclusions Imaging biobanks can serve as a platform for collecting, sharing and analysing medical images integrated with imaging biomarkers, biological and clinical data. A relatively small proportion of current biobanks also contain images and can thus be classified as imaging biobanks. Key Points• Imaging biobanks are a powerful tool for large-scale collection and processing of medical images integrated with imaging biomarkers and patient non-imaging data. • Most imaging biobanks retrieved were European, disease-oriented and accessible under user request.• While many biobanks have been developed so far, only a relatively small proportion of them are imaging biobanks.
Radiomics is emerging as a promising and useful tool in cardiac magnetic resonance (CMR) imaging applications. Accordingly, the purpose of this study was to investigate, for the first time, the effect of image resampling/discretization and filtering on radiomic features estimation from quantitative CMR T1 and T2 mapping. Specifically, T1 and T2 maps of 26 patients with hypertrophic cardiomyopathy (HCM) were used to estimate 98 radiomic features for 7 different resampling voxel sizes (at fixed bin width), 9 different bin widths (at fixed resampling voxel size), and 7 different spatial filters (at fixed resampling voxel size/bin width). While we found a remarkable dependence of myocardial radiomic features from T1 and T2 mapping on image filters, many radiomic features showed a limited sensitivity to resampling voxel size/bin width, in terms of intraclass correlation coefficient (> 0.75) and coefficient of variation (< 30%). The estimate of most textural radiomic features showed a linear significant (p < 0.05) correlation with resampling voxel size/bin width. Overall, radiomic features from T2 maps have proven to be less sensitive to image preprocessing than those from T1 maps, especially when varying bin width. Our results might corroborate the potential of radiomics from T1/T2 mapping in HCM and hopefully in other myocardial diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.