Abstract. Deforestation in Amazon is expected to decrease evapotranspiration (ET) and to increase soil moisture and river discharge under prevailing energy-limited conditions. The magnitude and sign of the response of ET to deforestation depend both on the magnitude and regional patterns of land-cover change (LCC), as well as on climate change and CO2 levels. On the one hand, elevated CO2 decreases leaf-scale transpiration, but this effect could be offset by increased foliar area density. Using three regional LCC scenarios specifically established for the Brazilian and Bolivian Amazon, we investigate the impacts of climate change and deforestation on the surface hydrology of the Amazon Basin for this century, taking 2009 as a reference. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three general circulation models (GCMs) of the IPCC 4th Assessment Report (AR4). On average, over the Amazon Basin with no deforestation, the GCM results indicate a temperature increase of 3.3 °C by 2100 which drives up the evaporative demand, whereby precipitation increases by 8.5 %, with a large uncertainty across GCMs. In the case of no deforestation, we found that ET and runoff increase by 5.0 and 14 %, respectively. However, in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs produce a 6 % decrease of ET, which is less than precipitation, so that runoff decreases by 22 %. For instance, the minimum river discharge of the Rio Tapajós is reduced by 31 % in 2100. To study the additional effect of deforestation, we prescribed to the LSMs three contrasted LCC scenarios, with a forest decline going from 7 to 34 % over this century. All three scenarios partly offset the climate-induced increase of ET, and runoff increases over the entire Amazon. In the south-east, however, deforestation amplifies the decrease of ET at the end of dry season, leading to a large increase of runoff (up to +27 % in the extreme deforestation case), offsetting the negative effect of climate change, thus balancing the decrease of low flows in the Rio Tapajós. These projections are associated with large uncertainties, which we attribute separately to the differences in LSMs, GCMs and to the uncertain range of deforestation. At the subcatchment scale, the uncertainty range on ET changes is shown to first depend on GCMs, while the uncertainty of runoff projections is predominantly induced by LSM structural differences. By contrast, we found that the uncertainty in both ET and runoff changes attributable to uncertain future deforestation is low.
Considering the high rates of evapotranspiration of Amazonian forests, understanding the impacts of deforestation on water loss rates is important for assessing those impacts on a regional and global scale. This paper quantifies evapotranspiration rates in two different pasture sites in Amazonia and evaluates the differences between the sites. In both places, measured evapotranspiration varies seasonally, decreasing during the dry season. The decrease is higher at the southwestern Amazonia site, while at the central Amazonia site, the decrease is less pronounced. During the dry season, average values of evapotranspiration are around 2.2±0.6 mm day −1 in central Amazonia and 2.4± 0.6 mm day −1 in southwestern Amazonia, while during the wet season, those values are 2.1±0.6 mm day −1 in central Amazonia and 3.5±0.8 mm day −1 in southwestern Amazonia. On an annual basis, the pasture in southwestern Amazonia has higher evapotranspiration than in central Amazonia. We conclude that the main reason for this difference is the lower available energy in the wet season at the central Amazonian site, combined with a lower leaf area index at this site during the whole year. Still, the evapotranspiration is significantly controlled by the vegetation, which is well coupled with the local moisture conditions in the dry season.
Abstract. Neglecting any atmospheric feedback to precipitation, deforestation in Amazon, i.e., replacement of trees by shallow rooted short vegetation, is expected to decrease evapotranspiration (ET). Under energy-limited conditions, this process should lead to higher soil moisture and a consequent increase in river discharge. The magnitude and sign of the response of ET to deforestation depends both on land-cover change (LCC), and on climate and CO2 concentration changes in the future. Using three regional LCC scenarios recently established for the Brazilian and Bolivian Amazon, we investigate the combined impacts of deforestation and climate change on the surface hydrology of the Amazon basin for this century at sub-basin scale. For each LCC scenario, three land surface models (LSMs), LPJmL-DGVM, INLAND-DGVM and ORCHIDEE, are forced by bias-corrected climate simulated by three General Circulation Models (GCMs) for different scenarios of the IPCC 4th Assessment Report (AR4). The GCM results indicate that by 2100, without deforestation, the temperature will have increased by a mean of 3.3 °C (a range of 1.7 to 4.5 °C) over the Amazon basin, intensifing the regional water cycle, whereby precipitation, ET and runoff increase by 8.5, 5.0 and 14 %, respectively. However, under this same scenario in south-east Amazonia, precipitation decreases by 10 % at the end of the dry season and the three LSMs estimate a 6 % decrease of ET, which does not compensate for lower precipitation. Runoff in southeastern Amazonia decreases by 22 %, reducing minimum river discharge from the Rio Tapajós catchment by 31 % in 2100. The low LCC scenario projects a 7 % decline in the area of Amazonian forest by 2100, as compared to 2009; for the high LCC scenario the projection is a 34 % decline. In the extreme deforestation scenario, forest loss partly offsets (−2.5 %) the positive effect of climate change on increasing ET and slightly amplifies (+3.0 %) the increase of runoff. Effects of deforestation are more pronounced in the southern part of the Amazon basin, in particular in the Rio Madeira catchment where up to 56 % of the 2009 forest area is lost. The effect of deforestation on water budgets is more severe at the end of the dry season in the Tapajós and the Xingu catchments where the decrease of ET due to climate change is amplified by forest area loss. Deforestation enhances runoff during this period (+35 %) offsetting the negative effect of climate change (−22 %), and balances the decrease of low flows in the Rio Tapajós.
The process-based dynamic global vegetation and hydrology model LPJmL calculates carbon and the corresponding water fluxes with a daily time step and a spatial resolution of 0.5 x 0.5 (lat/lon) (Sitch et al., 2003; Gerten et al., 2004b; Bondeau et al., 2007; Rost et al., 2008). Potential natural vegetation and the main processes controlling its dynamics are calculated from inputs of climate data (temperature, precipitation and cloud cover), atmospheric CO2, and soil texture. The main processes included
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.