C−H activation is an attractive methodology to increase molecular complexity without requiring substrate prefunctionalization. In contrast to well‐established cross‐coupling methods, C−H activation is less explored on large scales and its use in the production of pharmaceuticals faces substantial hurdles. However, the inherent advantages, such as shorter synthetic routes and simpler starting materials, motivate medicinal chemists and process chemists to overcome these challenges, and exploit C−H activation steps for the synthesis of pharmaceutically relevant compounds. In this review, we will cover examples of drugs/drug candidates where C−H activation has been implemented on a preparative synthetic scale (range between 355 mg and 130 kg). The optimization processes will be described, and each example will be examined in terms of its advantages and disadvantages, providing the reader with an in‐depth understanding of the challenges and potential of C−H activation methodologies in the production of pharmaceuticals.
Aryl iodides are key motifs in organic chemistry due to their versatility as linchpins in metal-mediated cross-coupling reactions for synthesis and drug discovery. These scaffolds are typically prepared indirectly from...
Aryl iodides are key motifs in organic chemistry due to their versatility as linchpins in metal-mediated cross-coupling reactions for synthesis and drug discovery. These scaffolds are typically prepared indirectly from prefunctionalized starting materials or via electrophilic aromatic iodination protocols. These methods are limited to specific regioisomers by their inherent selectivities and/or the availability of the required starting materials. Herein, we describe the sterically controlled iodination of arenes through an isodesmic C-H/C-I bond metathesis approach enabled by our dual ligand-based catalysts for arene-limited nondirected C-H activation. The protocol gives direct access to a complementary product spectrum with respect to traditional methods. Its synthetic utility is demonstrated by a broad scope and the suitability for late-stage modification.
Die C−H‐Aktivierung ist eine attraktive Methode zur Steigerung der molekularen Komplexität, ohne Vorfunktionalisierung des Substrats. Im Gegensatz zu den etablierten Kreuzkupplungsmethoden ist die C−H‐Aktivierung in großem Maßstab weniger erforscht und ihre Anwendung bei der Herstellung von Arzneimitteln ist mit erheblichen Hürden verbunden. Die inhärenten Vorteile, wie kürzere Synthesewege und einfachere Ausgangsmaterialien, motivieren Medizinal‐ und Prozesschemiker jedoch dazu, diese Herausforderungen zu überwinden und C−H‐Aktivierungsschritte für die Synthese pharmazeutisch relevanter Verbindungen zu nutzen. In diesem Aufsatz werden wir Beispiele von Arzneimitteln/Wirkstoffkandidaten behandeln, bei denen die C−H‐Aktivierung in einem präparativen Synthesemaßstab (zwischen 355 mg und 130 kg) durchgeführt wurden. Die Optimierungsprozesse werden beschrieben und jedes Beispiel wird im Hinblick auf seine Vor‐ und Nachteile untersucht, um dem Leser ein umfassendes Verständnis der Herausforderungen und des Potenzials von C−H‐Aktivierungsmethoden für die Herstellung von Arzneimitteln zu vermitteln.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.