Horizontal gene transfer contributes to the evolution of bacterial species. Mobile genetic elements play an important role in horizontal gene transfer, and characterization of the regulation of these elements should provide insight into conditions that influence bacterial evolution. We characterized a mobile genetic element, ICEBs1, in the Gram-positive bacterium Bacillus subtilis and found that it is a functional integrative and conjugative element (ICE) capable of transferring to Bacillus and Listeria species. We identified two conditions that promote ICEBs1 transfer: conditions that induce the global DNA damage response and crowding by potential recipients that lack ICEBs1. Transfer of ICEBs1 into cells that already contain the element is inhibited by an intercellular signaling peptide encoded by ICEBs1. The dual regulation of ICEBs1 allows for passive propagation in the host cell until either the potential mating partners lacking ICEBs1 are present or the host cell is in distress.conjugation ͉ horizontal gene transfer ͉ quorum sensing ͉ peptide signaling ͉ DNA microarrays
Sigma-H is an alternative RNA polymerase sigma factor that directs the transcription of many genes that function at the transition from exponential growth to stationary phase in Bacillus subtilis. Twenty-three promoters, which drive transcription of 33 genes, are known to be recognized by sigma-H-containing RNA polymerase. To identify additional genes under the control of sigma-H on a genome-wide basis, we carried out transcriptional profiling experiments using a DNA microarray containing >99% of the annotated B. subtilis open reading frames. In addition, we used a bioinformatics-based approach aimed at the identification of promoters recognized by RNA polymerase containing sigma-H. This combination of approaches was successful in confirming most of the previously described sigma-H-controlled genes. In addition, we identified 26 putative promoters that drive expression of 54 genes not previously known to be under the direct control of sigma-H. Based on the known or inferred function of most of these genes, we conclude that, in addition to its previously known roles in sporulation and competence, sigma-H controls genes involved in many physiological processes associated with the transition to stationary phase, including cytochrome biogenesis, generation of potential nutrient sources, transport, and cell wall metabolism.Bacterial sigma factors are positive regulators of gene expression that interact with core RNA polymerase and direct the initiation of transcription from defined promoter sequences (22, 25). The major sigma factor in most bacteria, sigma-A, is required for expression of many of the so-called housekeeping functions and the bulk of the RNA during growth. Many bacteria have multiple alternative sigma factors, which are responsible for directing transcription of specialized gene sets. Bacillus subtilis has at least 17 alternative sigma factors which are involved in a variety of processes, including certain stress responses, chemotaxis, and motility (25,30). One of the more dramatic examples of gene regulation by alternative sigma factors is the process of endospore formation (sporulation) in B. subtilis. The sporulation program of gene expression in B. subtilis is carried out under the direction of five alternative sigma factors whose activities are subject to spatial and temporal control (14, 51). Here we report the results of transcriptional profiling experiments aimed at identifying, on a genome-wide basis, genes under the control of one of these sigma factors, sigma-H.Sigma-H, the sigH (spo0H) gene product, directs the transcription of several genes that function in the transition from exponential growth to stationary phase, including the initiation of spore formation and entry into the state of genetic competence (1,7,12,20). Sigma-H is required at an early stage of sporulation and directly activates transcription of several sporulation genes including spo0A, spo0F, kinA, spo0M, spoVG, and spoVS and the spoIIA operon (2,4,28,41,42,46,54,59,61). Sigma-H also directs the transcription of several mem...
SummaryICEBs1 is an integrative and conjugative element (conjugative transposon) integrated into trnS-leu2 in Bacillus subtilis. In response to DNA damage or high concentrations of potential mating partners, ICEBs1 can excise and transfer to various recipients, including other species. We found that excision of ICEBs1 occurs by site-specific recombination within 60 bp direct repeats that mark the junctions between ICEBs1 and chromosomal DNA. Excision required two ICEBs1 genes, int (integrase, ydcL), predicted to encode a tyrosine recombinase similar to that of phage lambda, and xis (excisionase, sacV). Ectopic expression of xis was sufficient to induce excision of ICEBs1, indicating that regulation of xis transcription by DNA damage and peptide signalling normally controls excision. Int, but not Xis, was needed for sitespecific integration. We found that in the absence of the primary bacterial attachment site (attB) in trnSleu2, ICEBs1 integrated in secondary attachment sites that are similar to a 17 bp sequence in attB. In the absence of int, ICEBs1 could recombine into the chromosome by RecA-dependent homologous recombination, provided ICEBs1 contained a region of sequence identity to a chromosomal locus.
Quorum sensing describes the ability of bacteria to sense their population density and respond by modulating gene expression. In the plant soft-rotting bacteria, such as Erwinia, an arsenal of plant cell wall-degrading enzymes is produced in a cell density-dependent manner, which causes maceration of plant tissue. However, quorum sensing is central not only to controlling the production of such destructive enzymes, but also to the control of a number of other virulence determinants and secondary metabolites. Erwinia synthesizes both N-acylhomoserine lactone (AHL) and autoinducer-2 types of quorum sensing signal, which both play a role in regulating gene expression in the phytopathogen. We review the models for AHL-based regulation of carbapenem antibiotic production in Erwinia. We also discuss the importance of quorum sensing in the production and secretion of virulence determinants by Erwinia, and its interplay with other regulatory systems.
SummaryDifferent modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, S erratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon H alobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in E scherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E . coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.