Audio-based pornographic detection enables efficient adult content filtering without sacrificing performance by exploiting distinct spectral characteristics. To improve it, we explore pornographic sound modeling based on different neural architectures and acoustic features. We find that CNN trained on log mel spectrogram achieves the best performance on Pornography-800 dataset. Our experiment results also show that log mel spectrogram allows better representations for the models to recognize pornographic sounds. Finally, to classify whole audio waveforms rather than segments, we employ voting segment-to-audio technique that yields the best audio-level detection results.
CCS CONCEPTS• Computing methodologies → Artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.