Asialo-transferrin from human cerebrospinal fluid was purified to homogeneity. Investigation of the structural characteristics of its oligosaccharides support our hypothesis of 'brain-type' glycosylation of intrathecally synthesized cerebrospinal fluid proteins. For carbohydrate structural analysis, high-pH anion-exchange chromatography, methylation analysis, liquid secondary ion-and matrix-assisted laser desorptionl ionization mass spectrometry of the permethylated derivatives were used. The major structure turned out to be a complex-type agalactodiantennary oligosaccharide with bisecting N-acetylglucosamine and proximal fucose. Analysis of a second transferrin preparation containing both asialo-and sialo-transferrin revealed another major glycan species derived from the sialylated transferrin variant which is galactosylated and lacks bisecting N-acetylglucosamine and fucose.
An extracellular enzyme capable of efficient hydrolysis of xanthophyll esters was purified from culture supernatants of the basidiomycete Pleurotus sapidus. Under native conditions, the enzyme exhibited a molecular mass of 430 kDa, and SDS-PAGE data suggested a composition of eight identical subunits. Biochemical characterisation of the purified protein showed an isoelectric point of 4.5, and ideal hydrolysis conditions were observed at pH 5.8 and 40 degrees C. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. An 1861-bp cDNA containing an open reading frame of 1641 bp was cloned from a cDNA library that showed ca. 40% homology to Candida rugosa lipases. The P. sapidus carboxylesterase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus that has been characterised at the molecular level.
SummaryThe cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidasecatalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A.
Primary porcine choroid plexus epithelial cells cultivated in chemically defined medium maintain their epithelial characteristics and form confluent monolayers. They produce a fluid the composition of which resembles cerebrospinal fluid. The present study demonstrates constitutive secretion of large amounts of beta-trace protein. This intrathecally synthesized protein is a prominent polypeptide constituent of natural cerebrospinal fluid. According to the identity of amino acid sequences it has previously been tentatively identified as a prostaglandin-D synthase and as a member of the lipocalin protein family. beta-Trace was purified from cell culture supernatants and was subjected to tryptic digestion and amino acid sequencing of the resulting peptides. The complete primary structure of the protein was obtained by additional isolation of the cDNA from cultured epithelial cells. The porcine 163-amino acid polypeptide showed 69% identity with the human beta-trace and contained two N-glycosylation sites occupied by complex-type oligosaccharides as is the case for the human protein. The amino acid sequences around the N-glycosylation sites of mammalian beta-trace proteins (porcine, human, murine, and rat) were highly conserved. The nucleotide sequence was found to be less conserved; the porcine cDNA had a strikingly high GC-content (67%). The constitutive secretion of beta-trace protein from the in vitro cultivated porcine choroid plexus epithelial cells demonstrates that the cells have retained their major in vivo physiological properties: secretion of cerebrospinal fluid proteins. Therefore, this in vitro culture system may be used as a versatile tool for studying the regulation of the formation of cerebrospinal fluid.
Primary porcine choroid plexus epithelial cells cultivated in chemically defined medium maintain their epithelial characteristics and form confluent monolayers. They produce a fluid the composition of which resembles cerebrospinal fluid. The present study demonstrates constitutive secretion of large amounts of beta-trace protein. This intrathecally synthesized protein is a prominent polypeptide constituent of natural cerebrospinal fluid. According to the identity of amino acid sequences it has previously been tentatively identified as a prostaglandin-D synthase and as a member of the lipocalin protein family. beta-Trace was purified from cell culture supernatants and was subjected to tryptic digestion and amino acid sequencing of the resulting peptides. The complete primary structure of the protein was obtained by additional isolation of the cDNA from cultured epithelial cells. The porcine 163-amino acid polypeptide showed 69% identity with the human beta-trace and contained two N-glycosylation sites occupied by complex-type oligosaccharides as is the case for the human protein. The amino acid sequences around the N-glycosylation sites of mammalian beta-trace proteins (porcine, human, murine, and rat) were highly conserved. The nucleotide sequence was found to be less conserved; the porcine cDNA had a strikingly high GC-content (67%). The constitutive secretion of beta-trace protein from the in vitro cultivated porcine choroid plexus epithelial cells demonstrates that the cells have retained their major in vivo physiological properties: secretion of cerebrospinal fluid proteins. Therefore, this in vitro culture system may be used as a versatile tool for studying the regulation of the formation of cerebrospinal fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.