Here we report the results of a three-year replicated field trial on the effects of novel clover- and alfalfa-based fertilizer products (Ekofert® K and Ekofert® L), with the input levels equivalent to 120, 180, or 240 kg N ha−1, on the yield and selected sensory and nutritional quality parameters of onion. The study showed that Ekofert fertilizer applied at all three levels produced similar or higher yields than the standard fertilization regimes used in conventional farming in all three seasons. Significant differences in onion composition profiles between fertilization treatments were detected within individual seasons; however, due to substantial interseasonal variation, no consistent differences could be detected between (i) mineral N and Ekofert fertilizer treatments, (ii) the two different Ekofert products, and (iii) contrasting Ekofert input levels. Results demonstrate that clover- and alfalfa-based pelleted organic fertilizer products are a suitable alternative for intensive organic field vegetable production.
The aim of the present study was to determine the concentrations of polyphenols and carotenoids by means of HPLC/UV-Vis in certified organic and non-organic carrots (Daucus carota L.) of two cultivars (Flacoro and Nantejska). The analyzed carrot root samples contained, on average, 4.29 ± 0.83 mg/100g f.w. of carotenoids (mainly β-carotene) and 9.09 ± 2.97 mg/100g f.w. of polyphenols, including 4.44 ± 1.42 mg/100g f.w. of phenolic acids and 4.65 ± 1.96 mg/100g f.w. of flavonoids. Significant effects of the production system on the carotenoids (total) and β-carotene concentration were found, with higher concentrations of these compounds generally identified in conventionally cultivated roots (4.67 ± 0.88 mg/100g f.w.) vs. organically grown ones (4.08 ± 0.74 mg/100g f.w.). There was a noticeable inter-sample (inter-farm) variation in the concentration of polyphenols in carrot roots. Despite a general trend towards higher concentrations of these compounds in the organic carrots (9.33 ± 3.17 mg/100g f.w.) vs. conventional carrots (8.64 ± 2.58 mg/100g f.w.), and in those of Nantejska (9.60 ± 2.87 mg/100g f.w.) vs. Flacoro (8.46 ± 3.02 mg/100g f.w.) cultivar, no consistent, statistically significant impact of the production system and/or cultivar on the level of these bioactive compounds was identified. More efforts should be encouraged to ensure that organic crops reaching the market consistently contain the expected high levels of health-promoting bioactive compounds, which could be brought through their shelf-life and all processing steps, in order to meet consumers’ expectations and provide the expected health benefits.
In recent years, organic food, produced with the use of natural means and production methods, has been gaining more and more popularity among consumers. This is due, inter alia, to their belief that it is more abundant in health-promoting bioactive compounds and safer than conventional food. Consumers are increasingly aware of the harmfulness of plant protection products used in intensive agriculture, which are not allowed in organic production. At the same time, it is reported that a certain share of organic products on the EU market are contaminated with pesticide residues, which may raise consumer concerns and lead to a loss of trust in organic food. The aim of the present study was to investigate the problem of pesticide residues occurrence in random samples of organically produced fruits and vegetables (apples, potatoes, carrots, and beetroots) commonly used in the Polish households, and which are available directly from the organic producers in open markets in Poland. For simultaneous analysis of 375 pesticides, an LC-MS/MS system consisting of an Eksigent expert ultraLC 100-XL coupled to a triple quadrupole mass spectrometer QTRAP 6500 and GC Agilent 6890 N equipped with ECD/NPD system were used. Among the 96 vegetable and fruit samples studied, 89 samples (92.7%) were free from detectable pesticide residues, 7 samples (7.3%) of carrot (5) and potato (2) were contaminated, and in 1 of them (1.0%) the detected residues exceeded the maximum residue limit (MRL). None of the tested apple and beetroot samples were found to contain detectable residues. These findings are important for Polish consumers who look for high-quality organic food. However, the presence of detectable residues in a small proportion of the organic samples indicates a need to strengthen the monitoring of pesticides in organic crops, to educate farmers and to raise their awareness regarding the risks of unauthorized use of pesticides banned in organic farming, which can damage the reputation of the whole organic sector.
In the present study, the roots of valerian (Valeriana officinalis L.) and lovage (Levisticum officinale Koch.) from the organic and low-input conventional cultivation systems were subjected to the analysis of selected groups of phenolic compounds (phenolic acids, flavonoids) and antioxidant activity. Plants were grown in two consecutive vegetation seasons in the experimental plots located in western Poland. Phenolic acids and flavonoids were determined by high performance liquid chromatography (HPLC/UV–Vis), while the antioxidant activity of the samples was measured with the use of DPPH radical scavenging activity assay. The concentrations of phenolic acids (sum) and flavonoids (sum) were found to be higher in the conventional lovage roots, as compared to the organically grown lovage roots, while in the case of valerian, no significant effects of the cultivation system on the levels of the sums of these analyzed compounds were found. Furthermore, no significant effect of the cultivation system on the antioxidant activity of herbs was observed. Additional efforts could be invested in enhancing the potential of organic medicinal plants to consistently present the expected high concentrations of health-promoting antioxidants, which could be effectively brought through their post-harvest handling, storage and processing, and thus meet consumers’ expectations at the stage when they reach the market.
Organic agriculture is considered one of the elements of sustainable food production and consumption, mainly due to its limited impact on the natural environment. At the same time, the quality features of organically produced foods, especially sensory attributes and health promoting values, are important factors determining consumers’ interest, and therefore play a key role in the organic sector’s development. The aim of this study was to investigate the sensory characteristics and concentrations of sugars and selected health-promoting bioactive compounds of organic courgette compared to conventionally grown courgette. In addition, untargeted metabolomic analysis of the courgette fruits was performed. The results of this study did not show a significant effect of the horticultural system (organic vs. conventional) on the concentrations of vitamin C, carotenoids, and chlorophylls in the courgette fruits. However, the fruits from the organic systems were significantly richer in sugars when compared to the conventionally cultivated ones (p = 0.038). Moreover, the organic fruits fertilized with manure contained significantly higher amounts of polyphenols, including gallic acid (p = 0.016), chlorogenic acid (p = 0.012), ferulic acid (p = 0.019), and quercetin-3-O-rutinoside (p = 0.020) compared to the conventional fruits. The untargeted analysis detected features significantly differentiating courgette fruits depending on the cultivar and horticultural system. Some significant differences in sensory values were also identified between fruits representing the two cultivars and coming from the horticultural systems compared in the study. Conventional courgettes were characterized by the most intensive peel color and aquosity, but at the same time were the least hard and firm compared to the fruits from the two organic systems. There was also a trend towards higher overall quality of the organically grown fruits. The presented study shows that the organic and conventional courgette fruits differ in a number of quality features which can influence consumers’ health and purchasing choices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.