Ubiquitin-specific protease 7 (USP7) is a member of one of the most largely studied families of deubiquitylating enzymes. It plays a key role modulating the levels of multiple proteins, including tumor suppressors, transcription factors, epigenetic modulators, DNA repair proteins, and regulators of the immune response. The abnormal expression of USP7 is found in various malignant tumors and a high expression signature generally indicates poor tumor prognosis. This suggests USP7 as a promising prognostic and druggable target for cancer therapy. Nonetheless, no approved drugs targeting USP7 have already entered clinical trials. Therefore, the development of potent and selective USP7 inhibitors still requires intensive research and development efforts before the pre-clinical benefits translate into the clinic. This mini review systematically summarizes the role of USP7 as a drug target for cancer therapeutics, as well as the scaffolds, activities, and binding modes of some of the most representative small molecule USP7 inhibitors reported in the scientific literature. To wind up, development challenges and potential combination therapies using USP7 inhibitors for less tractable tumors are also disclosed.
The generation of candidate hit molecules with the potential to be used in cancer treatment is a challenging task. In this context, computational methods based on deep learning have been employed to improve in silico drug design methodologies. Nonetheless, the applied strategies have focused solely on the chemical aspect of the generation of compounds, disregarding the likely biological consequences for the organism’s dynamics. Herein, we propose a method to implement targeted molecular generation that employs biological information, namely, disease-associated gene expression data, to conduct the process of identifying interesting hits. When applied to the generation of USP7 putative inhibitors, the framework managed to generate promising compounds, with more than 90% of them containing drug-like properties and essential active groups for the interaction with the target. Hence, this work provides a novel and reliable method for generating new promising compounds focused on the biological context of the disease.
In this work, we develop a method for generating targeted hit compounds by applying deep reinforcement learning and attention mechanisms to predict binding affinity against a biological target while considering stereochemical information. The novelty of this work is a deep model Predictor that can establish the relationship between chemical structures and their corresponding pIC50 values. We thoroughly study the effect of different molecular descriptors such as ECFP4, ECFP6, SMILES and RDKFingerprint. Also, we demonstrated the importance of attention mechanisms to capture long-range dependencies in molecular sequences. Due to the importance of stereochemical information for the binding mechanism, this information was employed both in the prediction and generation processes. To identify the most promising hits, we apply the self-adaptive multi-objective optimization strategy. Moreover, to ensure the existence of stereochemical information, we consider all the possible enumerated stereoisomers to provide the most appropriate 3D structures. We evaluated this approach against the Ubiquitin-Specific Protease 7 (USP7) by generating putative inhibitors for this target. The predictor with SMILES notations as descriptor plus bidirectional recurrent neural network using attention mechanism has the best performance. Additionally, our methodology identify the regions of the generated molecules that are important for the interaction with the receptor’s active site. Also, the obtained results demonstrate that it is possible to discover synthesizable molecules with high biological affinity for the target, containing the indication of their optimal stereochemical conformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.