This study investigates the influence of the surface free energy (SFE) on the adhesion behaviour between wheat dough and bakery-relevant food processing surfaces. In doing so, the contact time and production-related changes of the adhesive and the adherend were taken into account. The adhesion measurements were conducted by means of previously developed methods (modified Chen/Hoseney, contact time measuring cell), whereby the force required for separating the dough from the surface after processing-relevant contact times was determined applying a texture analyzer. The SFE was determined by contact angle measurements. The SFE values for the examined materials are ranged between 5.5 ± 0.81 and 42.7 ± 0.88 mN/m. A strong linear correlation between the SFE of the bakery surfaces and their adhesion to dough could be determined after a certain contact time (≥ 1 min) (r = + 0.96 for surfaces with Sa > 20 μm; r = + 0.94 for surfaces with Sa < 20 μm). Bakery surfaces with energy values σsolid surface, total > 30 mN/m including a polar content indicated a strong interaction with wheat dough, which was confirmed by high adhesion values. Production-related changes to the processing surfaces showed a great impact on the adhesion behaviour: e.g. the abrasion of proofing cloths caused a higher amount of protruding fibres, which operate as a separating layer, resulting in a decrease of dough adhesion even after long contact times. The results in this study emphasize the importance of the SFE in the development of processing surfaces for the baking industry.
Undesired dough adhesion is still a challenge during the production of baked goods. There are various methods for determining the adhesive texture properties of dough. In the majority of scientific papers, dough stickiness is measured analytically by the force‐distance recording of dough detachment. In this study, we describe a new multi‐scale approach to compare dough adhesion phenomena in a laboratory, pilot sale and human sensory assessment. In it, the adhesive material properties of dough were investigated using a pilot scale toppling device representing dough adhesion behavior in the production process, in the laboratory by texture analysis with the Chen–Hoseney method and furthermore with a new, implemented non‐oral human sensory analysis. To simulate different dough adhesion behavior, the dough mechanical and adhesion properties were varied by applying dough‐modifying enzymes and different dough storage times. The structural changes in the different wheat dough system were compared by rheological characterization. By characterizing the different adhesion phenomena of the doughs, the sample with bacterial xylanase showed the highest values after 80 min of storage time in all three methods. Correlation analysis revealed a strong relationship between the detachment time (pilot scale) and human sensory assessment attributes (Force R = 0.81, Time R = 0.87, Distance R = 0.92, Stickiness R = 0.80) after 80 min of storage time. Even though human sensory assessment showed limits in the detectability of differences in dough adhesion behavior compared to the Chen–Hoseney method, it was better suited to predict machinability.
Gluten-free breads often show a reduced specific bread volume, in comparison to gluten-containing products, caused by non-adapted processing technologies of gluten-free dough. In this investigation, different mixing speeds and durations (600–3000 rpm for 3 min, 5 min or 8 min, respectively) as well as variations in the pressure (prel – 50 to prel + 130 kPa) in the headspace atmosphere during mixing (Stephan mixer) and pressure ratios of overpressure/negative pressure of 8 min mixing (20/80, 50/50, 80/20) were studied to determine their impact on the gas volume fraction of dough and specific volume of breads. A pressure rise of prel 50 kPa, prel 100 kPa or prel 130 kPa increased the gas volume fraction in dough of 60%, 100% or 120%, respectively, and led to a significant higher specific bread volume (7%) and the reduction of crumb hardness (35%) at prel 130 kPa. A linear correlation (R2 = 0.843) between the pressure and specific volume of breads was found. An extended first mixing phase at overpressure resulted in the formation of a very fine pore structure, whereby a short overpressure phase caused the formation of big pores. Thus, the control of the headspace atmosphere during mixing is a suitable parameter to adjust the density of dough and consequently, the pore size distribution for a specific texture design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.