Populations have often been perceived as a structuring component for language to emerge and evolve: the larger the population, the more structured the language. While this observation is widespread in the sociolinguistic literature, it has not been consistently reproduced in computer simulations with neural agents. In this paper, we thus aim to clarify this apparent contradiction. We explore emergent language properties by varying agent population size in the speaker-listener Lewis Game. After reproducing the experimental difference, we challenge the simulation assumption that the agent community is homogeneous. We then investigate how speaker-listener asymmetry alters language structure through the analysis a potential diversity factor: learning speed. From then, we leverage this observation to control population heterogeneity without introducing confounding factors. We finally show that introducing such training speed heterogeneities naturally sort out the initial contradiction: larger simulated communities start developing more stable and structured languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.