Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.
Summary1 Successional pathways were evaluated in two Amazonian secondary forest communities with different land-use histories. Sites which had been clearcut without subsequent use were dominated after 6-10 years by the pioneer genus Cecropia (Moraceae), whereas those used for pasture before abandonment were dominated by the pioneer genus Vismia (Clusiaceae). 2 There were 58 plant families and 300 species identified in Cecropia stands but only 43 families and 147 species were identified in Vismia stands. There were 77 species in common (Sorensen similarity = 0.34). 3 Differences in species number and composition of recruiting individuals between stand types were significant and were a function of the dominant pioneer genus, stem density, distance from primary forest, and land-use history. Regeneration under Vismia canopy was dominated by small Vismia individuals (25% of plants < 2 cm basal diameter), whereas regeneration under Cecropia canopy was more diverse and did not include a single young Cecropia . 4 The number of regenerating plants in both secondary stand types dropped off sharply with distance (5, 25, 50, and 100 m) from primary forest, suggesting that seed dispersal was limiting plant recruitment. Species richness also declined with distance and could be explained by the decline in plant density. Species richness in Cecropia stands increased linearly with plant density, but in Vismia stands the richness increase with density was a decelerating function. 5 For the central Amazon, secondary succession involves a more rapid return of primary forest species if deforestation is not followed by use as pasture before abandonment.
Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.