Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10–15 million hectares of wheat every year, resulting in 20–50% yield losses. Since this crop greatly sustains a population’s food demands, providing ca. 20% of the world’s energy and protein diets requirements, it is crucial to understand changes in soil and plant physiology under excess water conditions. Variations in redox potential, pH, nutrient availability, and electrical conductivity of waterlogged soil will be addressed, as well as their impacts in major plant responses, such as root system and plant development. Waterlogging effects at the leaf level will also be addressed, with a particular focus on gas exchanges, photosynthetic pigments, soluble sugars, membrane integrity, lipids, and oxidative stress.
Coffea arabica L. is as a tropical crop that can be grown under monocrop or agroforestry (AFS) systems, usually at altitudes greater than 600 m, with suitable environmental conditions to bean quality. This study aimed to assess the effect of altitude (650, 825, and 935 m) and light conditions (deep shade—DS, and moderate shade—MS provided by native trees, and full Sun—FS) on the physical and chemical attributes of green coffee beans produced in the Gorongosa Mountain. Regardless of altitude, light conditions (mainly MS and FS) scarcely affected most of the studied physical and chemical attributes. Among the few exceptions in physical attributes, bean mass tended to lower values under FS in all three altitudes, whereas bean density increased under FS at 650 m. As regards the chemical compound contents, sporadic changes were found. The rises in trigonelline (MS and FS at 935 m), soluble sugars (FS at 935 m), and the decline in p-coumaric acid (MS and FS at 825 m), may indicate an improved sensory profile, but the rise in FQAs (FS at 825 m) could have a negative impact. These results highlight a relevant uncertainty of the quality changes of the obtained bean. Altitude (from 650 to 935 m) extended the fruit maturation period by four weeks, and altered a larger number of bean attributes. Among physical traits, the average sieve (consistent tendency), bean commercial homogeneity, mass, and density increased at 935 m, whereas the bean became less yellowish and brighter at 825 and 935 m (b*, C* colour attributes), pointing to good bean trade quality, usually as compared with beans from 650 m. Furthermore, at 935 m trigonelline and 5-CQA (MS and FS) increased, whereas FQAs and diCQAs isomers declined (in all light conditions). Altogether, these changes likely contributed to improve the sensory cup quality. Caffeine and p-coumaric acid showed mostly inconsistent variations. Overall, light conditions (FS, MS, or DS) did not greatly and consistently altered bean physical and chemical attributes, whereas altitude (likely associated with lower temperature, greater water availability (rainfall/fog), and extended maturation period) was a major driver for bean changes and improved quality.
Cowpea (Vigna unguiculata) is a robust legume; nevertheless, yield is always affected by drought, especially when it occurs during reproductive growth and seed filling. Considered a key crop in the effort to attain food security, and a suitable crop for a scenario of climate change, modern disregard for cowpea landraces is particularly detrimental as it causes genetic variability loss, compromising breeding efforts. To contribute to the evaluation of the cowpea germplasm, four Portuguese landraces (L1, L2, L3, L4) were compared with a commercial variety (CV) to evaluate their physiological responses to terminal drought and their inter-variation on productivity, under semi-controlled conditions. Despite no differences in relative water content (RWC) between the CV and the landraces under water deficit (WD), differences in leaf water potential (Ψ) defined the CV as having an isohydric control of stomata in contrast with anisohydric control for landraces. There was an identical decrease in the photosynthetic rate for all plants under stress, caused by both stomatal and non-stomatal limitations, namely, damages at the level of photosystem II as indicated by fluorescence measurements. Instantaneous water use efficiency (iWUE) was improved with stress in L1 and L3. Maintenance of higher relative chlorophyll content for longer periods in the CV revealed a stay-green phenotype. The slim differences observed in terms of stomatal control, iWUE and progression of senescence between the CV and the landraces under WD led to quite important differences in terms of productivity, as inferred from improved yield (number of pods and number of grains per plant). This is a clear result of pragmatic on-farm selection. On one hand it shows that small differences in stomatal responses or water saving strategies under WD may lead to desirable outcomes and should therefore be considered during breeding. On the other hand, it suggests that other traits could be explored in view of drought adaptation. These results highlight the need to preserve and characterize as many genetic pools as possible within a species.
Bread wheat (Triticum aestivum L.) is a major staple crop, and more adapted varieties are needed to ensure productivity under unpredictable stress scenarios resulting from climate changes. In the development of new genotypes, root system traits are essential since roots have a key function in water and nutrient uptake, and root architecture determines the plant’s ability to spatially explore the soil resources. Genetic variation in wheat root system may be assessed at the early stages of development. This study evaluates in vitro and at the seedling stage, the genetic diversity of root growth angle (RGA), seminal root number (SRN), and radicle length (RadL) in 30 bread wheat genotypes from different origins and belonging to distinct evolutive or breeding groups. SRN and RadL were analyzed at 1, 2, 3 and 6 days after sowing (DAS) and RGA was measured through the angle between the first pair of seminal roots. A large variability was found in RGA values that ranged from 63° to 122°. Although differences were found between genotypes within the same groups, the narrower angles tended to occur among landraces, while the higher RGA values were observed in advanced lines and Australian varieties. Differences were also observed as regards the SRN (1.0–3.0, 2.7–4.7, 3.2–5.0 and 4.4–6.3 at 1, 2, 3 and 6 DAS, respectively) and RadL (0.1–1.5, 2.1–5.0, 4.0–7.5 and 5.1–13.7 cm at 1, 2, 3 and 6 DAS, respectively). Genetic variability in root traits at seedling stage allows more rapid selection of genotypes better adapted to environmental and soil constraints, necessary to Portuguese Wheat Breeding Program. It will also contribute to the definition of wheat ideotypes with improved performance under Mediterranean climate conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.