Significance
The acute respiratory distress syndrome (ARDS) is a devasting clinical problem with high mortality, no drug therapy, and poorly understood pathogenesis. The hallmark of ARDS is persistent pulmonary edema, attributable in part to impaired Na
+
and fluid transport across the alveolo-capillary barrier, undertaken by the epithelial sodium channel (ENaC). We describe a unique signaling pathway driven by TGF-β, which acutely dysregulates ENaC trafficking, blocking alveolar Na
+
transport and edema resolution. This pathway represents a unique pathomechanism in ARDS, highlights potential “druggable” targets, and may represent a physiological means of acutely regulating ENaC in lungs and other organs.
Uncoupling of GJs prior to ischaemia either by PC or CBX preserves the electrical coupling of cells and results in an antiarrhythmic effect during a subsequent ischaemic insult, indicating that a partial closure of gap junctions may play a trigger role in the protection. In contrast, when CBX is administered in PC dogs the protection both against GJ uncoupling and arrhythmias is markedly attenuated, suggesting that the antiarrhythmic protection, at least in part, is mediated through GJs.
Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl− channel TMEM16A gene. We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing pulmonary arterial hypertension (PAH).We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs).In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl− current in PASMCs (n=9–10). These cells were depolarised and could be repolarised by TMEM16A inhibitors or knock-down experiments (n=6–10). Inhibition/knock-down of TMEM16A reduced the proliferation of IPAH-PASMCs (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMCs produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established pulmonary hypertension.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying the vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to reverse remodelling in PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.