This work was focused on evaluating two mixtures of lignocellulosic feedstock, forest and marginal land resources, in order to co-produce solid biofuel, oligosaccharides, and glucose under a biorefinery concept. The selection of renewable bio-mixtures was based on different criteria, namely, territorial distribution, fire risk during summer months and total sugar content. The two mixtures were submitted to autohydrolysis pretreatment under non-isothermal conditions (in the range of 190 C-240 C corresponding to severity of 3.71e4.82). Both mixtures were compared in terms of fractionation (cellulose and lignin recoveries and hemicellulose solubilization), analyzed for thermal properties (high heating values) and for enzymatic susceptibility of cellulose. The highest xylan recoveries (62 and 69%), as xylose and xylooligosaccharides, were achieved for both mixtures in the liquid phase at 206 C. Autohydrolysis pretreatment increased the high heating values of the two mixtures presenting an alternative use of solid fraction as solid biofuel. Moreover, enzymatic susceptibility of these pretreated mixtures was also improved from 45 to 90% of glucose yield by increasing pretreatment severity. This comparative study of autohydrolysis showed a suitable process for the valorization of both mixtures within a biorefinery concept.
The development of edible coatings incorporating bioextracts from mushrooms native to Portuguese forests aims to enhance the value of the endogenous forest and mycological resources by harnessing their potential as a source of antimicrobial and antioxidant compounds. Edible coatings represent an important pathway to decreasing food waste and contributing to implementing a circular bioeconomy. The coating should result in product valorization through improved preservation/conservation, increased shelf life, as well as enhancement of its antioxidant and enzymatic properties. To evaluate the effectiveness of an edible coating on fungal food matrices, a 14-day shelf-life study was conducted, wherein both coated and untreated mushrooms were examined under controlled storage temperatures of 4 °C and 9.3 °C. Agaricus bisporus was chosen as the food matrix for its bioeconomy significance, and Pleurotus eryngii was selected for the preparation of the food-based coating due to its profile of bioactive compounds. Microbiological analysis and physicochemical monitoring were conducted on the food matrices and the coating. Coated mushrooms had less mass loss and color change, and had better texture after 14 days. Microbiological analysis revealed that the coating had no antimicrobial activity. Overall, the coating improved the shelf life of the coated mushrooms but had less effect on the microbial community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.