Ornithine transcarbamylase deficiency (OTCD) is an X-linked urea cycle error causing hyperammonemia and orotic aciduria. Clinical diagnosis is generally confirmed by mutation detection. However, in approximately 20% of the patients, no mutation is found by conventional mutation-searching strategies, which fail to detect deletions spanning at least a whole exon, large rearrangements, or mutations at non-coding regions. To detect large deletions or duplications, we have applied the multiplex ligation-dependent probe amplification (MLPA) methodology to three OTCD patients (two females and one male). MLPA revealed copy number alterations of OTC exons in all of them. The two females were found to be heterozygous for deletions of either exon 2 or exons 6-9, and the male was confirmed to lack all OTC exons. Females' characterization of the deletion breakpoints by long polymerase chain reaction and sequencing revealed the mutations c.78-3544_217-129del5921 and c.541-600_1005 + 1880del10862 corresponding to exon 2 and exon 6-9 deletions, respectively. Examination of the deletion-flanking regions suggests that exon 2 deletion probably resulted from replication slippage facilitated by a secondary structure formed by two inverted Alu repeats, whereas an Alu-Alu homologous recombination was probably responsible for the exon 6-9 deletion. This work contributes to the identification of novel disease-causing mutations in OTCD and increases the knowledge on possible mutational mechanisms generating deletions in OTC.
SummaryCongenital Disorders of Glycosylation (CDG) are a group of recessive genetic disorders characterized by hypoglycosylation of glycoproteins. CDG-Ia, the most common type, is caused by mutations in the PMM2 gene, coding for a phosphomannomutase (PMM2; EC 5.4.2.8). The mutational spectrum of PMM2 comprises more than 80 different mutations but one of them, R141H, is particularly interesting due to its high frequency among CDG-Ia patients worldwide. In contrast, other mutations are ethnically or geographically restricted, such as D65Y which is only found in patients of Iberian ancestry.In the present study a population genetic approach was used in an attempt to clarify the origins of two important disease causing mutations: R141H and D65Y. Based on SNP and STR genotypic analysis, we ascertained an association between the R141H substitution and a particular haplotype, suggesting a common origin for all the mutated chromosomes. Similar results were found for D65Y, although the associated haplotype was different from that of R141H, suggesting independent origins for these two mutations. Our results enable us to infer an Iberian origin for the D65Y mutation.
Phosphomannomutases (PMMs) catalyze the interconversion of mannose-6-phosphate to mannose-1-phosphate. In humans, two PMM enzymes exist--PMM1 and PMM2; yet, they have different functional specificities. PMM2 presents PMM activity, and its deficiency causes a Congenital Disorder of Glycosylation (PMM2-CDG). On the other hand, PMM1 can also act as glucose-1,6-bisphosphatase in the brain after stimulation with inosine monophosphate and thus far has not been implicated in any human disease. This study aims to refine the evolutionary time frame at which gene duplication gave rise to PMM1 and PMM2, and to identify the most likely amino acid positions underlying the proteins' different functions. The phylogenetic analysis using available protein sequences, allowed us to establish that duplication occurred early in vertebrate evolution. In order to understand the molecular basis underlying the functional divergence, conserved and most likely functional divergence-related sites were identified, through the analysis of site-specific evolutionary rates. This analysis indicates that most of the sites known to be important in the homodimer formation and in the catalytic activity are conserved in both proteins. Among those potentially related to functional divergence, two positions (183 and 186 in human PMM1) emerge as the most interesting ones. The residues at these positions have different side-chain conformations in the protein structure in the unbound and bound states, and are highly but differently conserved in PMM1 and in PMM2 proteins. Altogether, these results provide new data into the evolutionary history of PMM1 and PMM2 duplicates and highlight the most probable sites that evolved to distinct functional specificities.
BackgroundThe Conserved Oligomeric Golgi (COG) complex is an eight-subunit assembly that localizes peripherally to Golgi membranes and is involved in retrograde vesicular trafficking. COG subunits are organized in two heterotrimeric groups, Cog2, -3, -4 and Cog5, -6, -7, linked by a dimeric group formed by Cog1 and Cog8. Dysfunction of COG complex in humans has been associated with new forms of Congenital Disorders of Glycosylation (CDG), therefore highlighting its essential role. In the present study, we intended to gain further insights into the evolution of COG subunits in vertebrates, using comparative analyses of all eight COG proteins.ResultsWe used protein distances and dN/dS ratios as a measure of the rate of proteins evolution. The results showed that all COG subunits are evolving under strong purifying selection, although COG1 seems to evolve faster than the remaining proteins. In addition, we also tested the expression of COG genes in 20 human tissues, and demonstrate their ubiquitous nature.ConclusionsCOG complex has a critical role in Golgi structure and function, which, in turn, is involved in protein sorting and glycosylation. The results of this study suggest that COG subunits are evolutionary constrained to maintain the interactions between each other, as well with other partners involved in vesicular trafficking, in order to preserve both the integrity and function of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.