Macrophages exposed to macrophage colony-stimulating factor acquire the capacity to suppress T cell proliferation; this effect is associated with de novo expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). We have purified IDO and tested its activity in in vitro models of T cell activation. IDO was able to inhibit proliferation of CD4+ T lymphocytes, CD8+ T lymphocytes, and natural killer (NK) cells; proliferation of B lymphocytes was not affected. The inhibitory role of tryptophan and of its catabolites was then tested. In the presence of tryptophan, only l-kynurenine and picolinic acid inhibit cell proliferation. In a tryptophan-free medium cell proliferation was not affected. In the absence of tryptophan inhibition induced by l-kynurenine and picolinic acid was observed at concentrations below the lowest concentration that was effective in the presence of tryptophan, and quinolinic acid acquired some inhibitory capacity. Inhibition of cell proliferation induced by the tryptophan catabolites resulting from IDO activity was selective, applying only to cells undergoing activation. Resting cells were not affected and could subsequently activate normally. We suggest that IDO exerts its effect on cell proliferation by (i) starting the cascade of biochemical reactions that produce the three catabolites and by (ii) enhancing their inhibitory potential by depriving the extracellular microenvironment of tryptophan.
ARG1, expressed by human PMNs, inhibits T cell proliferation by depleting extracellular L-arginine. Here, we report that ARG1, released from gelatinase granules by PMNs, is inactive at physiological pH unless activated by factor(s) stored in azurophil granules. Whereas ARG1 exocytosis was induced by TNF-α or ionomycin, only the latter mediated the release of both granules, resulting in extracellular ARG enzyme activity at physiological pH. Furthermore, after fractionation of the different classes of granules, only the mixture of gelatinase and azurophil granules resulted in ARG1 activity at physiological pH. The use of protease inhibitors indicated the involvement of a PMSF- and leupeptin-susceptible serine protease in ARG1 processing and activation. Finally, the supernatant of viable PMNs undergoing frustrated phagocytosis, which mediates gelatinase and azurophil granule release, inhibited T cell proliferation through ARG-dependent mechanisms. In vivo, high ARG1 concentrations and increased ARG enzyme activity, sufficient to inhibit T cell proliferation, were observed in synovial fluids from RA. These findings suggest that PMNs, recruited at sites of immune complex deposition, induce ARG1-dependent immune suppression through concomitant exocytosis of gelatinase and azurophil granules.
Arginase 1 (ARG1) inhibits T-cell proliferation by degrading extracellular arginine, which results in decreased responsiveness of T cells to CD3/TCR stimulation. In humans, ARG1 is stored in inactive form within granules of polymorphonuclear neutrophils (PMNs) and gets activated on release. We studied the role of PMNs-related ARG1 activity in nonsmall cell lung cancer (NSLC), in which tumor-infiltrating lymphocytes showed reduced proliferation in response to CD3/TCR triggering. Patients with NSCLC had increased ARG1 plasma levels as compared to healthy controls. Furthermore, immunohistochemistry showed that tumor-infiltrating PMNs display reduced intracellular ARG1, in comparison to intravascular or peritumoral PMNs, suggesting a role of tumor microenvironment in ARG1 release. Indeed, supernatants of NSCLC cell lines induced exocytosis of ARG1 from PMNs. All (4/4) NSCLC cell lines and all (7/7) CD142 cell samples from NSCLC expressed interleukin (IL)-8 mRNA, whereas TNFa mRNA was expressed by 1 cell line and by 2 tumor specimens. Furthermore, all NSCLC cell lines secreted immunoreactive IL-8, albeit at different levels. IL-8 was as effective as TNFa in triggering ARG1 release and the 2 cytokines acted synergistically. Secreted ARG1 was biologically active and catabolized extracellular arginine. The supernatant of IL-8 gene-silenced NSCLC cells did not mediate ARG1 release by PMNs. Altogether these findings demonstrate a role of IL-8 in ARG1 exocytosis by PMNs and indicate that, due at least in part to IL-8 secreted by NSCLC cells, PMNs infiltrating NSCLC release ARG1. This phenomenon could contribute to local immune suppression. ' 2009 UICC
In human prostate cancer, Arginase 2 (ARG2) and nitric oxide synthase (NOS) are concomitantly expressed by tumor cells, and induce tumor immune escape via peroxynitrite-dependent Tyrosine nitrosylation. Since there were no data regarding this immune suppressive mechanism in other tumor types, and an evaluation of its clinical relevance in human tumors had still to be provided, we have investigated presence and clinical relevance of ARG2 and NOS expression in lung cancer. No evidence of NOS expression was found, no significant NOS enzymatic activity was detected. Instead, ARG2 protein was expressed by tumor cells. In a cohort of 120 patients, the amount of ARG2-positive tumor cells was significantly higher in small cell lung cancers (SCLC) than in nonsmall cell lung cancers (NSCLC). Large cell undifferentiated carcinomas had twice ARG2 than the other NSCLC subtypes. ARG2 expression was increased in Grade 3 tumors, as compared to Grades 1 and 2. However, no relationship was found with tumor size and stage, and with patient survival. Indeed, the enzyme was active, since the Arginine catabolite Ornithine was produced, but Arginine depletion was not attained. In addition, nitrotyrosine was not found in tumor tissue. Accordingly, when tumor cells isolated from lung cancer were incubated with activated autologous T cells, no inhibition of proliferation was detected. Our results indicate that ARG2 is expressed in lung cancer, but it does not induce tumor immune escape and does not affect disease progression, most probably due to the lack of concomitant NOS expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.