in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein d o m a i n , w i t h e ff e c t s on p o p u l a t i o n ge n e t i c c h a r a c t e r i s t i c s a n d ne w personalized therapies.
SERine Protein INhibitor-A1 (SERPINA1) is an inducible blood cell gene coding for alpha1-antitrypsin (AAT), a plasma protease inhibitor whose circulating levels are raised during inflammation, infection and advanced pregnancy. DNA methylation has been suggested to play a role in SERPINA1 gene expression regulation in peripheral blood mononuclear cells (PBMCs). The methylation status of SERPINA1 in PBMCs is unknown. The aim of this study was to evaluate the methylation profile of the SERPINA1 promoter in PBMC. To this purpose PBMCs and serum were collected from healthy subjects (HS) (n = 75), including blood donors (BD) (n = 25), pregnant women at early pregnancy (EP) (n = 25), i.e., within the first trimester, and pregnant women at late pregnancy (LP) (n = 25), i.e., at the third trimester. DNA from PBMCs was treated with sodium bisulfite and PCR amplified for SERPINA1 gene promoter, followed by sequencing analyses. AAT serum levels were determined by ELISA test. SERPINA1 was found hypermethylated in 58.7% of HS. The prevalence of SERPINA1 hypermethylation was significantly higher in BD (68%) and EP (88%) than in LP (20%) (p < 0.01). The median serum AAT concentration was 1.07, 0.63, and 3.15 mg/ml in BD, EP, and LP, respectively (p < 0.05, BD and EP vs LP). This study indicates, for the first time, that SERPINA1 gene promoter is differentially methylated in PBMCs from HS. Likely, modulation of the methylation may be a novel epigenetic regulator mechanism of AAT expression in the PBMC of HS. Therefore, SERPINA1 gene promoter methylation may represent an epigenetic biomarker of PBMCs in healthy subjects.
For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient’s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe.
Background. Previous studies reported human papillomaviruses (HPVs) in middle ear tumors, whereas these viruses have been poorly investigated in chronic inflammatory middle ear diseases. We investigated HPVs in non-tumor middle ear diseases, including chronic otitis media (COM). Methods. COM specimens (n = 52), including chronic suppurative otitis media (CSOM) (n =38) and cholesteatoma (COMC) (n = 14), as well as normal middle ear (NME) specimens (n = 56) were analyzed. HPV sequences and DNA loads were analyzed by quantitative-PCR. HPV genotyping was performed by direct sequencing. Results. HPV DNA was detected in 23% (12/52) of COM and in 30.4% (17/56) of NME (p > 0.05). Specifically, HPV DNA sequences were found in 26.3% (10/38) of CSOM and in 14.3% (2/14) of COMC (p > 0.05). Interestingly, the HPV DNA load was higher in COMC (mean 7.47 copy/cell) than in CSOM (mean 1.02 copy/cell) and NME (mean 1.18 copy/cell) (P = 0.03 and P = 0.017 versus CSOM and NME, respectively). HPV16 and HPV18 were the main genotypes detected in COMC, CSOM and NME. Conclusions. These data suggest that HPV may infect the middle ear mucosa, whereas HPV-positive COMCs are associated with higher viral DNA loads as compared to NME.Pathogens 2020, 9, 224 2 of 10 mucosa sampled from CSOM patients [11]. However, the etiology of CSOM remains to be determined. The relationship between HPV infection and inflammation has been previously reported [12]. It has been shown that persistent infection with high-risk HPVs leads to an increase in pro-inflammatory cytokines, including IL-6, TNF-α and MIP-1α [13]. In addition, high-risk HPV type 16 (HPV16) is able to increase the expression of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins, which are important mediators of inflammation [14,15]. Until now, only a single study has reported HPV DNA sequences in CSOM, whereby different HPV genotypes, including HPV16, HPV18 and HPV6, have been detected in 30.7% of CSOM [4].COMC is a form of expanding growth consisting of keratinizing squamous cell epithelium [16]. There is great interest in the etiopathogenesis of HPV-associated cholesteatoma because HPV commonly infects the stratified epithelium [17,18]. However, conflicting data have been reported for HPV in COMC [10,[19][20][21]. HPV sequences have been detected in COMC with different prevalence, ranging from 3% to 70% [10,[19][20][21]. Moreover, no specific HPV genotypes have been associated with COMC, as high-and low-risk HPVs, such as HPV16, HPV18 and HPV6 and HPV11, have been detected [10,[19][20][21].There is emerging evidence that HPV infection can occur in different anatomical sites. Since HPV infects epithelia [22], all anatomical sites covered with epithelial tissue are potentially exposed to HPV infection. Apart from pluristratified tissues of the cervix [23], vulva [24] and oral pharynx [25], HPV sequences have been detected in simple epithelia from several anatomical sites such as lung [26], upper respiratory tract [27], larynx [28] and nose [29]. Since the middle ear muc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.