In the attempt to explore complex bacterial communities of environmental samples, primers hybridizing to phylogenetically highly conserved regions of 16S rRNA genes are widely used, but differential amplification is a recognized problem. The biases associated with preferential amplification of multitemplate PCR were investigated using 'universal' bacteria-specific primers, focusing on the effect of primer mismatch, annealing temperature and PCR cycle number. The distortion of the template-to-product ratio was measured using predefined template mixtures and environmental samples by terminal restriction fragment length polymorphism analysis. When a 1 : 1 genomic DNA template mixture of two strains was used, primer mismatches inherent in the 63F primer presented a serious bias, showing preferential amplification of the template containing the perfectly matching sequence. The extent of the preferential amplification showed an almost exponential relation with increasing annealing temperature from 47 to 61 degrees C. No negative effect of the various annealing temperatures was observed with the 27F primer, with no mismatches with the target sequences. The number of PCR cycles had little influence on the template-to-product ratios. As a result of additional tests on environmental samples, the use of a low annealing temperature is recommended in order to significantly reduce preferential amplification while maintaining the specificity of PCR.
The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora.
DNA from environmental PCR products separated by denaturing gradient gel electrophoresis (DGGE) was isolated from the background smear rather than from discrete bands of the DGGE gel. The "interband" region was considered as a potential source of less dominant members of natural microbial communities. Surprisingly, instead of detecting new bands from the re-amplified PCR products, patterns very similar to the original ones were obtained regardless of the position of the "interband" region. The results suggest that the separation of amplicons by DGGE may not be perfect and band re-amplification based sequence analyses need careful interpretation.
Each step of a molecular environmental microbiology study is prone to errors, though the qualitative and quantitative biases of PCR amplification could result in the most serious biases. One has to be aware of this fact, and well-characterized PCR biases have to be avoided by using target-optimized PCR protocols. The most important tasks are primer and thermal profile optimization. We have shown that primer mismatches, even in the case of universal primers, can cause almost complete missing of common taxa from clone libraries, for example. Similarly high annealing temperatures can drastically distort community composition of the sample in the PCR product. Strategies of primer selection and PCR thermal profile design are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.