Zika virus (ZIKV) is a mosquito-borne flavivirus that became widely recognized due to the epidemic in Brazil in 2015. Since then, there has been nearly a 20-fold increase in the incidence of microcephaly and birth defects seen among women giving birth in Brazil, leading the Centers for Disease Control and Prevention (CDC) to officially declare a causal link between prenatal ZIKV infection and the serious brain abnormalities seen in affected infants. Here, we used a unique rat model of prenatal ZIKV infection to study three possible long-term outcomes of congenital ZIKV infection: (1) behavior, (2) cell proliferation, survival, and differentiation in the brain, and (3) immune responses later in life. Adult offspring that were prenatally infected with ZIKV exhibited motor deficits in a sex-specific manner, and failed to mount a normal interferon response to a viral immune challenge later in life. Despite undetectable levels of ZIKV in the brain and serum in these offspring at P2, P24, or P60, these results suggest that prenatal exposure to ZIKV results in lasting consequences that could significantly impact the health of the offspring. To help individuals already exposed to ZIKV, as well as be prepared for future outbreaks, we need to understand the full spectrum of neurological and immunological consequences that could arise following prenatal ZIKV infection.
Since Zika virus (ZIKV) first emerged as a public health concern in 2015, our ability to identify and track the long-term neurological sequelae of prenatal Zika virus (ZIKV) infection in humans has been limited. Our lab has developed a rat model of maternal ZIKV infection with associated vertical transmission to the fetus that results in significant brain malformations in the neonatal offspring. Here, we use this model in conjunction with longitudinal magnetic resonance imaging (MRI) to expand our understanding of the long-term neurological consequences of prenatal ZIKV infection in order to identify characteristic neurodevelopmental changes and track them across time. We exploited both manual and automated atlas-based segmentation of MR images in order to identify long-term structural changes within the developing rat brain following inoculation. The paradigm involved scanning three cohorts of male and female rats that were prenatally inoculated with 107 PFU ZIKV, 107 UV-inactivated ZIKV (iZIKV), or diluent medium (mock), at 4 different postnatal day (P) age points: P2, P16, P24, and P60. Analysis of tracked brain structures revealed significantly altered development in both the ZIKV and iZIKV rats. Moreover, we demonstrate that prenatal ZIKV infection alters the growth of brain regions throughout the neonatal and juvenile ages. Our findings also suggest that maternal immune activation caused by inactive viral proteins may play a role in altered brain growth throughout development. For the very first time, we introduce manual and automated atlas-based segmentation of neonatal and juvenile rat brains longitudinally. Experimental results demonstrate the effectiveness of our novel approach for detecting significant changes in neurodevelopment in models of early-life infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.